Кинематическая вязкость масла – а какие еще бывают вязкости? Определение вязкости жидкости Что такое вязкость в каких единицах измеряется.

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных и дизельных топлив, нефтяных масел, ряда других нефтепродуктов. По значению вязкости судят о возможности распыления и прокачиваемости нефти и нефтепродуктов.

Различают динамическую, кинематическую, условную и эффективную (структурную) вязкость.

Динамической (абсолютной) вязкостью [μ ], или внутренним трением, называют свойства реальных жидкостей оказывать сопротивление сдвигающим касательным усилиям. Очевидно, это свойство проявляется при движении жидкости. Динамическая вязкость в системе СИ измеряется в [Н·с/м 2 ]. Это сопротивление, которое оказывает жидкость при относительном перемещении двух ее слоев поверхностью 1 м 2 , находящихся на расстоянии 1 м друг от друга и перемещающихся под действием внешней силы в 1 Н со скоростью 1 м/с. Учитывая, что 1 Н/м 2 = 1 Па, динамическую вязкость часто выражают в [Па·с] или [мПа·с]. В системе СГС (CGS) размерность динамической вязкости - [дин·с/м 2 ]. Эта единица называется пуазом (1 П = 0,1 Па·с).

Переводные множители для расчета динамической [μ ] вязкости.

Единицы Микропуаз (мкП) Сантипуаз (сП) Пуаз ([г/см·с]) Па·с ([кг/м·с]) кг/(м·ч) кг·с/м 2
Микропуаз (мкП) 1 10 -4 10 -6 10 7 3,6·10 -4 1,02·10 -8
Сантипуаз (сП) 10 4 1 10 -2 10 -3 3,6 1,02·10 -4
Пуаз ([г/см·с]) 10 6 10 2 1 10 3 3,6·10 2 1,02·10 -2
Па·с ([кг/м·с]) 10 7 10 3 10 1 3 3,6·10 3 1,02·10 -1
кг/(м·ч) 2,78·10 3 2,78·10 -1 2,78·10 -3 2,78·10 -4 1 2,84·10 -3
кг·с/м 2 9,81·10 7 9,81·10 3 9,81·10 2 9,81·10 1 3,53·10 4 1

Кинематической вязкостью [ν ] называется величина, равная отношению динамической вязкости жидкости [μ ] к ее плотности [ρ ] при той же температуре: ν = μ/ρ. Единицей кинематической вязкости является [м 2 /с] - кинематическая вязкость такой жидкости, динамическая вязкость которой равна 1 Н·с/м 2 и плотность 1 кг/м 3 (Н = кг·м/с 2). В системе СГС (CGS) кинематическая вязкость выражается в [см 2 /с]. Эта единица называется стоксом (1 Ст = 10 -4 м 2 /с; 1 сСт = 1 мм 2 /с).

Переводные множители для расчета кинематической [ν ] вязкости.

Единицы мм 2 /с (сСт) см 2 /с (Ст) м 2 /с м 2 /ч
мм 2 /с (сСт) 1 10 -2 10 -6 3,6·10 -3
см 2 /с (Ст) 10 2 1 10 -4 0,36
м 2 /с 10 6 10 4 1 3,6·10 3
м 2 /ч 2,78·10 2 2,78 2,78·10 4 1

Нефти и нефтепродукты часто характеризуются условной вязкостью , за которую принимается отношение времени истечения через калиброванное отверстие стандартного вискозиметра 200 мл нефтепродукта при определенной температуре [t ] ко времени истечения 200 мл дистиллированной воды при температуре 20°С. Условная вязкость при температуре [t ] обозначается знаком ВУ, и выражается числом условных градусов.

Условная вязкость измеряется в градусах ВУ (°ВУ) (если испытание проводится в стандартном вискозиметре по ГОСТ 6258-85), секундах Сейболта и секундах Редвуда (если испытание проводится на вискозиметрах Сейболта и Редвуда).

Перевести вязкость из одной системы в другую можно при помощи номограммы .

В нефтяных дисперсных системах в определенных условиях в отличие от ньютоновских жидкостей вязкость является переменной величиной, зависящей от градиента скорости сдвига. В этих случаях нефти и нефтепродукты характеризуются эффективной или структурной вязкостью:

Для углеводородов вязкость существенно зависит от их химического состава: она повышается с увеличением молекулярной массы и температуры кипения. Наличие боковых разветвлений в молекулах алканов и нафтенов и увеличение числа циклов также повышают вязкость. Для различных групп углеводородов вязкость растет в ряду алканы - арены - цикланы.

Для определения вязкости используют специальные стандартные приборы - вискозиметры, различающиеся по принципу действия.

Кинематическая вязкость определяется для относительно маловязких светлых нефтепродуктов и масел с помощью капиллярных вискозиметров, действие которых основано на текучести жидкости через капилляр по ГОСТ 33-2000 и ГОСТ 1929-87 (вискозиметр типа ВПЖ, Пинкевича и др.).

Для вязких нефтепродуктов измеряется условная вязкость в вискозиметрах типа ВУ, Энглера и др. Истечение жидкости в этих вискозиметрах происходит через калиброванное отверстие по ГОСТ 6258-85.

Между величинами условной °ВУ и кинематической вязкости существует эмпирическая зависимость:

Вязкость наиболее вязких, структурированных нефтепродуктов определяется на ротационном вискозиметре по ГОСТ 1929-87. Метод основан на измерении усилия, необходимого для вращения внутреннего цилиндра относительно наружного при заполнении пространства между ними испытуемой жидкостью при температуре t .

Кроме стандартных методов определения вязкости иногда в исследовательских работах используются нестандартные методы, основанные на измерении вязкости по времени падения калибровочного шарика между метками или по времени затухания колебаний твердого тела в испытуемой жидкости (вискозиметры Гепплера, Гурвича и др.).

Во всех описанных стандартных методах вязкость определяют при строго постоянной температуре, поскольку с ее изменением вязкость существенно меняется.

Зависимость вязкости от температуры

Зависимость вязкости нефтепродуктов от температуры является очень важной характеристикой как в технологии переработки нефти (перекачка, теплообмен, отстой и т. д.), так и при применении товарных нефтепродуктов (слив, перекачка, фильтрование, смазка трущихся поверхностей и т. д.).

С понижением температуры вязкость их возрастает. На рисунке приведены кривые изменения вязкости в зависимости от температуры для различных смазочных масел.

Общим для всех образцов масел является наличие областей температур, в которых наступает резкое повышение вязкости.

Существует много различных формул для расчета вязкости в зависимости от температуры, но наиболее употребляемой является эмпирическая формула Вальтера:

Дважды логарифмируя это выражение, получаем:



По данному уравнению Е. Г. Семенидо была составлена номограмма на оси абсцисс которой для удобства пользования отложена температура, а на оси ординат - вязкость.

По номограмме можно найти вязкость нефтепродукта при любой заданной температуре, если известна его вязкость при двух других температурах. В этом случае значение известных вязкостей соединяют прямой и продолжают ее до пересечения с линией температуры. Точка пересечения с ней отвечает искомой вязкости. Номограмма пригодна для определения вязкости всех видов жидких нефтепродуктов.



Для нефтяных смазочных масел очень важно при эксплуатации, чтобы вязкость как можно меньше зависела от температуры, поскольку это обеспечивает хорошие смазывающие свойства масла в широком интервале температур, т. е. в соответствии с формулой Вальтера это означает, что для смазочных масел, чем ниже коэффициент В, тем выше качество масла. Это свойство масел называется индексом вязкости , который является функцией химического состава масла. Для различных углеводородов по-разному меняется вязкость от температуры. Наиболее крутая зависимость (большая величина В) для ароматических углеводородов, а наименьшая - для алканов. Нафтеновые углеводороды в этом отношении близки к алканам.

Существуют различные методы определения индекса вязкости (ИВ).

В России ИВ определяют по двум значениям кинематической вязкости при 50 и 100°С (или при 40 и 100°С - по специальной таблице Госкомитета стандартов).

При паспортизации масел ИВ рассчитывают по ГОСТ 25371-97, который предусматривает определение этой величины по вязкости при 40 и 100°С. По этому методу согласно ГОСТ (для масел с ИВ меньше 100) индекс вязкости определяется формулой:

Для всех масел с ν 100 ν, ν 1 и ν 3 ) определяют по таблице ГОСТ 25371-97 на основе ν 40 и ν 100 данного масла. Если масло более вязкое (ν 100 > 70 мм 2 /с), то величины, входящие в формулу, определяют по специальным формулам, приведенным в стандарте.

Значительно проще определять индекс вязкости по номограммам .

Еще более удобная номограмма для нахождения индекса вязкости разработана Г. В. Виноградовым. Определение ИВ сводится к соединению прямыми линиями известных величин вязкости при двух температурах. Точка пересечения этих линий соответствует искомому индексу вязкости.

Индекс вязкости - общепринятая величина, входящая в стандарты на масла во всех странах мира. Недостатком показателя индекса вязкости является то, что он характеризует поведение масла лишь в интервале температур от 37,8 до 98,8°С.


Многими исследователями было подмечено, что плотность и вязкость смазочных масел до некоторой степени отражают их углеводородный состав. Был предложен соответствующий показатель, связывающий плотность и вязкость масел и названный вязкостно-массовой константой (ВМК). Вязкостно-массовая константа может быть вычислена по формуле Ю. А. Пинкевича:

В зависимости от химического состава масла ВМК его может быть от 0,75 до 0,90, причем, чем выше ВМК масла, тем ниже его индекс вязкости.


В области низких температур смазочные масла приобретают структуру, которая характеризуется пределом текучести, пластичности, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от их предварительного механического перемешивания, а также от скорости истечения или от обоих факторов одновременно. Структурированные масла, так же как и другие структурированные нефтяные системы, не подчиняются закону течения ньютоновских жидкостей, согласно которому изменение вязкости должно зависеть только от температуры.

Масло с неразрушенной структурой имеет значительно большую вязкость, чем после ее разрушения. Если понизить вязкость такого масла путем разрушения структуры, то в спокойном состоянии эта структура восстановится и вязкость примет первоначальное значение. Способность системы самопроизвольно восстанавливать свою структуру называется тиксотропией . С увеличением скорости течения, точнее градиента скорости (участок кривой 1), структура разрушается, в связи с чем вязкость вещества снижается и доходит до определенного минимума. Этот минимум вязкости сохраняется на одном уровне и при последующем возрастании градиента скорости (участок 2) до появления турбулентного потока, после чего вязкость вновь нарастает (участок 3).

Зависимость вязкости от давления

Вязкость жидкостей, в том числе и нефтепродуктов, зависит от внешнего давления. Изменение вязкости масел с повышением давления имеет большое практическое значение, так как в некоторых узлах трения могут возникать высокие давления.

Зависимость вязкости от давления для некоторых масел иллюстрируется кривыми, вязкость масел с повышением давления изменяется по параболе. При давлении Р она может быть выражена формулой:

В нефтяных маслах меньше всего с повышением давления изменяется вязкость парафиновых углеводородов и несколько больше нафтеновых и ароматических. Вязкость высоковязких нефтепродуктов с увеличением давления повышается больше, чем вязкость маловязких. Чем выше температура, тем меньше изменяется вязкость с повышением давления.

При давлениях порядка 500 - 1000 МПа вязкость масел возрастает настолько, что они теряют свойства жидкости и превращаются в пластичную массу.

Для определения вязкости нефтепродуктов при высоком давлении Д.Э.Мапстон предложил формулу:

На основе этого уравнения Д.Э.Мапстоном разработана номограмма , при пользовании которой известные величины, например ν 0 и Р , соединяют прямой линией и отсчет получают на третьей шкале.

Вязкость смесей

При компаундировании масел часто приходится определять вязкость смесей. Как показали опыты, аддитивность свойств проявляется лишь в смесях двух весьма близких по вязкости компонентов. При большой разности вязкостей смешиваемых нефтепродуктов, как правило, вязкость меньше, чем вычисленная по правилу смешения. Приближенно вязкость смеси масел можно рассчитать, если заменить вязкости компонентов их обратной величиной - подвижностью (текучестью) ψ см :

Для определения вязкости смесей можно также пользоваться различными номограммами. Наибольшее применение нашли номограмма ASTM и вискозиграмма Молина-Гурвича . Номограмма ASTM базируется на формуле Вальтера. Номограмма Молина-Гуревича составлена на основании экспериментально найденных вязкостей смеси масел А и В, из которых А обладает вязкостью °ВУ 20 = 1,5, а В - вязкостью °ВУ 20 = 60. Оба масла смешивались в разных соотношениях от 0 до 100% (об.), и вязкость смесей устанавливалась экспериментально. На номограмме нанесены значения вязкости в уел. ед. и в мм 2 /с.

Вязкость газов и нефтяных паров

Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда:

Летучесть (фугитивность) Оптические свойства Электрические свойства

Вязкость - это свойство жидкости оказывать сопротивление сдвигающим усилиям. Вязкость - свойство, присущее как капельным жидкостям, так и газам, которое проявляется только при движении, не может быть обнаружено при покое, и проявляется в виде внутреннего трения при перемещении смежных частиц жидкости. Вязкость характеризует степень текучести жидкости и подвижности ее частиц. Вязкостью жидкостей объясняется сопротивление и потери напор, которое возникает при движении их по трубам, каналам и прочим руслам, а также при движении в них инородных тел.

Изучение свойств внутреннего трения жидкости активно занимался Исаак Ньютон , заложив основы учению о вязкости. Ньютон высказал предположение (впоследствии подтвержденное опытом), что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. В итоге, И. Ньютон получил зависимость, характеризующую связь вязкости с явлением внутреннего трения, получившую название одноименного закона.

Пусть жидкость течет вдоль плоской стенки параллельными слоями. Каждый слой будет двигаться со своей скоростью, причем скорость слоев будет увеличиваться по мере отдаления от стенки.

Рассмотрим два слоя жидкости, движущиеся на расстоянии Δy друг от друга. Поскольку между слоями присутствует сила трения и благодаря взаимному торможению различные слои имеют различные скорости, и слой А движется со скоростью v, а слой Б - со скоростью (v+Δv). Величина Δv является абсолютным сдвигом слоя А по слою Б, а величина Δv/Δy - относительным сдвигом, или градиентом скорости. Тогда при движении возникает касательное напряжение τ (тау), которое характеризует трение на единицу площади (напряжением внутреннего трения) .

Напряжение внутреннего трения имеет физический смысл зависимости:

где F тр - сила внутреннего трения, Н; S - площадь соприкосновения поверхностей, м 2 .

Тогда согласно закону Ньютона зависимость между напряжением и относительным сдвигом будет иметь вид:

т.е. напряжение внутреннего трения пропорционального градиенту скорости.

Коэффициент пропорциональности µ (мю) называется динамическим коэффициентом вязкости . Из формулы видно, что динамический коэффициент вязкости численно равен напряжению внутреннего трения в том случае, когда относительная скорость двух плоскостей А и Б, отстоящих друг от друга на расстоянии 1 м, равна 1м/с.

Размерность динамического коэффициента вязкости следует из формулы. Так как напряжение τ есть сила, отнесенная к единице площади, то его размерность равна:

Размерность градиента скорости:


Отсюда размерность динамического коэффициента вязкости:

Таким образом, за единицу измерения динамической вязкости в системе единиц СИ принимают:

В физической системе единицей динамической вязкости является пуаз, обозначается «П »:

Динамическая вязкость у капельных жидкостей, молекулы которых расположены весьма близко друг к другу, при повышении температуры уменьшается в связи с увеличением скорости броуновского движения, ос-лабляющего удерживающие связи, то есть силы сцепления.

Зависимость коэффициента μ от температуры в общем виде выражается формулой:

где - значение при t = 0°C; а и b - опытные коэффициенты, зависящие от физико-химических свойств (от рода) жидкости; t - температура жидкости в °С.

У газов силы притяжения между молекулами проявляют себя только при сильном сжатии, а в обычных условиях молекулы газов находятся в состоянии хаотичного теплового движения и трение слоев газа друг о друга происходит только вследствие столкновения молекул. При повышении температуры скорость молекул возрастает, растет число их столкновений и вязкость возрастает.

Для пресной воды Пуазейлем получена формула:

Для воздуха известна формула Милликена:

В гидравлике для характеристики вязких свойств газов и паров иногда вместо динамического употребляется другой коэффициент вязкости, обозначаемый буквой η (эта) и связанный с динамическим коэффициентом уравнением

где g - ускорение силы тяжести, м/с 2 .

Очевидно, этот коэффициент вязкости η имеет размерность:

При этом единицей измерения η в технической системе единиц является

В гидравлике и на производстве широко применяется так называемый кинематический коэффициент вязкости ν (ню), определяемый как отношение динамической вязкости к плотности:

Размерность кинематического коэффициента вязкости:

В системе СИ для ν принята единица: .

Единицей измерения коэффициента ν в физической системе служит стокс, обозначается «Ст »:

Например, кинематический коэффициент вязкости воды равен

Величину, обратную динамической вязкости называют текучестью .

Вязкость для всех капельных жидкостей убывает с повы-шением температуры. Для получения точных гидравлических расчетов рекомендуется иметь график (или таблицу) зависимости вязкости от температуры, построенный на основе спе-циальных определений в лаборатории. Весьма осторожно следует относиться к различного рода номограммам и формулам, служащим для определения вязкости смеси двух или нескольких различных нефтепродуктов.

График, характеризующий зависимость изменения вязкости жидкости от температуры называется вискограммой (Рис. 1.3).

Рис.1.3. Вискограмма

Для определения вязкости жидкости при любой произвольной температуре T с достаточной точностью используется формула Рейнольдса-Филонова:

где ν - вязкость при известной температуре Т , u - коэффициент крутизны вискограммы, который характеризует угол наклона касательной вискограммы к оси абсцисс (Рис. 1.4) и определяется по формуле:

Рис.1.4 Определение коэффициента крутизны вискограммы

Таким образом, можно охарактеризовать любую жидкость и определить ее вязкость при любой температуре, зная координаты двух произвольных точек вискограммы. Стоит заметить, что для капельных жидкостей коэффициент вискограммы положителен, однако существуют жидкости, у которых вязкость мало изменяется при изменении температуры, для газообразных - коэффициент вискограммы отрицателен. Существуют жидкости, вязкость которых мало зависит от температуры, они представляют собой сложные химические соединения и используются в качестве рабочих в гидравлических машинах, например в вискомуфтах.

Существуют жидкости, для которых закон И. Ньютона неприменим. В отличие от обычных, ньютоновских, эти жидкости называют неньютоновскими , или аномальными.

Значения кинематической вязкости ν воды и воздуха

Вязкость различных сортов жидкости одного названия, например, нефти, в зависимости от химического состава и молекулярного строения может иметь различные значения.

Для вязких нефтей средние значения u = 0,05 + 0,1 на 1°С.

Вязкость жидкостей, как показывают опыты, зависит также от давления. При возрастании давления она обычно увеличивается. Исключением является вода, для которой при температуре до 32° С с повышением давления вязкость уменьшается. При давлениях, встречающихся в практике (до 20 МПа), изменение вязкости жидкостей весьма мало и при обычных гидравлических расчетах не учитывается.

Для определения кинематической вязкости вискозиметр подбирают таким образом, чтобы время течения нефтепродукта было не менее 200 с. Затем его тщательно промывают и высушивают. Пробу испытуемого продукта профильтровывают через бумажный фильтр. Вязкие продукты перед фильтрованием подогревают до 50–100оС. При наличии в продукте воды его осушают сульфатом натрия или крупнокристаллической поваренной солью с последующим фильтрованием. В термостатирующем устройстве устанавливают требуемую температуру. Точность поддержания выбранной температуры имеет большое значение, поэтому термометр термостата должен быть установлен так, чтобы его резервуар оказался примерно на уровне середины капилляра вискозиметра с одновременным погружением всей шкалы. В противном случае вводится поправка на выступающий столбик ртути по формуле:

^T = Bh(T1 – T2)

  • B – коэффициент температурного расширения рабочей жидкости термометра:
    • для ртутного термометра – 0,00016
    • для спиртового – 0,001
  • h – высота выступающего столбика рабочей жидкости термометра, выраженная в делениях шкалы термометра
  • T1 – заданная температура в термостате, оС
  • T2 – температура окружающего воздуха вблизи середины выступающего столбика, оС.

Определение времени истечения повторяют несколько раз. В соответствии с ГОСТ 33-82 число измерений устанавливают в зависимости от времени истечения: пять измерений – при времени истечения от 200 до 300 с; четыре – от 300 до 600 с и три – при времени истечения свыше 600 с. При проведении отсчетов необходимо следить за постоянством температуры и отсутствием пузырьков воздуха.
Для подсчета вязкости определяют среднее арифметическое значение времени истечения. При этом учитывают только те отсчеты, которые отличаются не более чем на ± 0,3 % при точных и на ± 0,5 % при технических измерениях от среднего арифметического.

ВЯЗКОСТЬ, свойство жидкости (или газа) оказывать сопротивление течению.

Вязкость рассматривают также как одно из переноса явлений, определяющее диссипацию энергии при деформации среды. Вязкость твёрдых тел обладает рядом особенностей и рассматривается обычно отдельно (смотри Внутреннее трение).

При ламинарном движении жидкости между двумя плоскопараллельными пластинами, одна из которых неподвижна, а другая движется со скоростью ν, молекулярный слой, непосредственно примыкающий к нижней пластине, остаётся неподвижным, а слой, примыкающий к верхней пластине, будет двигаться с максимальный скоростью (рис.). Течение жидкости характеризуется градиентом скорости γ?= dv/dz, указывающим на быстроту изменения скорости от слоя к слою в направлении, перпендикулярном движению жидкости. Если скорость изменяется линейно, то γ?= v/d, где d - расстояние между пластинами. Величину γ называют также скоростью сдвига.

Согласно основному закону вязкого течения, установленному И. Ньютоном (опубликован в 1687), напряжение сдвига τ = F/S, вызывающего течение жидкости, пропорционально градиенту скорости течения: τ = ηγ?. Коэффициентом пропорциональности η называется коэффициент динамической вязкости, или просто вязкость. Он характеризует сопротивление жидкости течению. Вязкость также можно рассматривать как меру энергии, рассеиваемой в форме теплоты в процессе течения жидкости. Рассеяние энергии происходит вследствие переноса количества движения. Величины коэффициента вязкости и мощности W, рассеиваемой в единице объёма за счёт вязкости, связаны соотношением: W = ηγ? 2 .

Соотношение, установленное Ньютоном, справедливо только в том случае, когда η не зависит от скорости сдвига. Среды, в которых выполняется это условие, называются ньютоновскими (смотри Ньютоновская жидкость).

Единицей измерения динамической вязкости в СИ является Па·с [в СГС - пуаз (дин·с/см 2): 1 пуаз = 0,1 Па·с]. Величина φ= 1/η, обратная вязкости, называется текучестью. Также часто рассматривают кинематическую вязкость ν = η/ρ (где ρ - плотность вещества), измеряемую в м 2 /с (СИ) и стоксах (СГС). Вязкость жидкостей и газов измеряется при помощи вискозиметров (смотри Вискозиметрия).

Вязкость идеальных газов определяется соотношением: η = (1/3)mn??, где m - масса молекулы, n - число молекул в единице объёма, ? - средняя скорость молекул, ? - длина свободного пробега молекулы.

Вязкость газов увеличивается при нагревании, а вязкость жидкостей, наоборот, уменьшается. Это связано с различными молекулярными механизмами вязкости в этих системах. Различают два механизма переноса количества движения: кинетический (не предполагающий столкновений между молекулами) и столкновительный. Первый является преобладающим в разреженном газе, второй - в плотном газе и жидкости.

В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому вязкость газов - следствие хаотического (теплового) движения молекул, в результате которого молекулы переходят из слоя в слой, замедляя течение. Поскольку средняя скорость молекул? возрастает с повышением температуры, вязкость газов увеличивается при нагревании.

Вязкость жидкостей, где расстояние между молекулами много меньше, чем в газах, обусловлена в первую очередь межмолекулярными взаимодействиями, ограничивающими подвижность молекул. С повышением температуры облегчается взаимное перемещение молекул, ослабевают межмолекулярные взаимодействия и, следовательно, уменьшается внутреннее трение жидкости.

Вязкость жидкости определяется размерами и формой молекул, их взаимным расположением и силой межмолекулярных взаимодействий. Вязкость зависит от химической структуры молекул жидкости. Так, вязкость органических веществ возрастает с введением в молекулу полярных групп и циклов. В гомологических рядах (насыщенные углеводороды, спирты, органические кислоты и т. п.) вязкость соединений возрастает с ростом молекулярной массы.

Вязкость растворов зависит от их концентрации и может быть как больше, так и меньше вязкости чистого растворителя. Вязкость предельно разбавленных суспензий линейно зависит от объёмной доли φ взвешенных частиц: η = η 0 (1 +αφ) (формула Эйнштейна), где η 0 - вязкость дисперсионной среды. Коэффициент α зависит от формы частиц; в частности, для сферических частиц α = 2,5. Аналогичная зависимость вязкости от объёмной доли наблюдается в растворах глобулярных белков.

Вязкость может изменяться в широких пределах. Далее приведены значения вязкости некоторых жидкостей и газов при температуре 20°С (в 10 -3 Па·с): газы - водород 0,0088, азот 0,0175, кислород 0,0202; жидкости - вода 1,002, этиловый спирт 1,200, ртуть 1,554, нитробензол 2,030, глицерин 1,485.

Наиболее низкой вязкостью обладает жидкий гелий. При температуре 2,172 К он переходит в сверхтекучее состояние, в котором вязкость равна нулю (смотри Сверхтекучесть). Вязкость газов в сотни раз меньше, чем вязкость обычных жидкостей. Вязкость расплавленных металлов по порядку величины близка к вязкости обычных жидкостей.

Высокой вязкостью обладают растворы и расплавы полимеров. Вязкость даже разбавленных растворов полимеров существенно выше, чем вязкость низкомолекулярных соединений. Это связано с тем, что размеры полимерных макромолекул настолько велики, что разные участки одной и той же макромолекулы оказываются в слоях, движущихся с разными скоростями, что вызывает дополнительное сопротивление течению. Вязкость более концентрированных растворов полимеров становится ещё выше из-за перепутанности макромолекул между собой. На измерении вязкости растворов основан один из способов оценки молекулярной массы полимеров.

Наличие в растворах полимеров пространственных структур, образуемых сцеплением макромолекул, приводит к возникновению так называемой структурной вязкости, которая (в отличие от вязкости ньютоновских жидкостей) зависит от напряжения (или скорости) сдвига (смотри Реология). При течении структурированной жидкости работа внешних сил затрачивается не только на преодоление внутреннего трения, но и на разрушение структуры.

Лит.: Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М. Курс общей физики. Механика и молекулярная физика. 2-е изд. М., 1969; Филиппова О. Е., Хохлов А. Р. Вязкость разбавленных растворов полимеров. М., 2002; Шрамм Г. Основы практической реологии и реометрии. М., 2003.

Вязкостью называется свойство жидкости сопротивляться внешнему воздействию благодаря внутреннему трению, возникающему между слоями.

Для определения вязкости существует два основных параметра: динамическая вязкость и кинематическая вязкость, которые связаны между собой соотношением:

Где ν - кинематическая вязкость, м 2 /с;

µ - динамическая вязкость, Па*с;

ρ - плотность жидкости, кг/м 3 .

Между слоями жидкости, движущимися друг относительно друга, возникает сила. Эта сила прямо пропорциональна скорости движения и площади соприкосновения.

В 1687 году И. Ньютоном был установлен закон вязкого течения жидкости:

где τ - касательные напряжения;

Коэффициент пропорциональности µ и назвали динамической вязкостью жидкости.

Динамическая и кинематическая вязкости зависят от температуры рабочей среды. Причем для газов и жидкостей эта зависимость различна. Это связано с различием во взаимодействии молекул. Для капельных жидкостей оба коэффициента убывают с возрастанием температуры.

Для определения вязкости используются специальные приборы - вискозиметры (U-образная стеклянная трубка). Одно из колен вискозиметра содержит впаянный капилляр, который оканчивается шариком. Под шариком и над ним нанесены метки, которые ограничивают определенный объем.

Для определения вязкости жидкости необходимо выбрать эталонную жидкость, вязкость которой является известной величиной. Для определения вязкости рабочей жидкости используется формула:

где µ - вязкость рабочей жидкости;

µ 0 - вязкость эталонной жидкости;

t - время истечения через капилляр исследуемой жидкости;

t 0 - время истечения через капилляр эталонной жидкости;

ρ - плотность исследуемой жидкости;

ρ 0 - плотность эталонной жидкости.

Так же существует понятие условной вязкости. Это отношение времени истечения через вискозиметр испытуемой жидкости при рабочей температуре к времени истечения дистиллированной воды при температуре 20°С (водное число). Водное соотношение является постоянной величиной для каждого прибора. Это соотношения выражается условными градусами.

где ВУ - условная вязкость;

t H 2 O - водное число.

Еще один метод определения вязкости жидкости - метод Стокса.

Он заключается в бросании различных шариков в жидкость и измерении скорости их падения. На шарик действуют три силы: сила тяжести, выталкивающая сила и сила сопротивления окружающей среды.

где F тяж - сила тяжести;

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Зарядное устройство для литий-ионных аккумуляторов Зарядное устройство для литий-ионных аккумуляторов Индикатор напряжения аккумулятора на LM3914 Цоколёвка микросхемы и транзистора Индикатор напряжения аккумулятора на LM3914 Цоколёвка микросхемы и транзистора Обработка резанием титановых сплавов Вредность при механической обработке титановых сплавов Обработка резанием титановых сплавов Вредность при механической обработке титановых сплавов