Самодельный спидометр на велосипед своими руками. Как выбрать спидометр на велосипед? Для чего служит это устройство? Функции данных устройств

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

В наших предыдущих статьях мы уже рассказывали про тренажеры для современных велосипедистов . В рамках нашего раздела: «специальные спортивные устройства и учебные приборы» продолжаем изучать всевозможные приспособления для всех любителей педалей и руля . И сегодня Вы познакомитесь с ещё одной такой любопытной разработкой, а также узнаете, как собрать механический велоспидометр своими руками.

Тренажер для велогонщиков.

Станок предназначен для совершенствования тактических действий велогонщиков. Данный тренажер позволяет гонщикам по движению стрелок на экране следить не только лишь за своей работой, но также и за работой противника.

Устройство (рис. 1,а) состоит из двух велосипедных станков 1, двух редукторов 2, тросов 3 и экрана 4 с соосно вмонтированными стрелками 5. Каждый редуктор представляет систему, состоящую из двух червячных передач.

Редуктор крепится на раме велостанка на расстоянии 25...30 см от переднего ролика. На первый червяк редуктора насаживается блок (из пластмассы или текстолита), длина окружности которого равна длине окружности ролика. Блок с роликами соединяется резиновым шкивом. Ко второй шестерне редуктора крепится гибкий трос от спидометра автомобиля. Второй конец троса присоединяется к стрелке.

Система крепления стрелок к редуктору показана на рис. 1,б (1 - муфта с механической шестеренкой, свободно вращающейся на оси первой стрелки; 2 - втулки).

Крепление тросов к стрелкам должно обеспечивать независимое вращение стрелок (например, соосное крепление). К оси первой стрелки трос крепится непосредственно. Осью второй стрелки служит муфточка с зубчатой шестеренкой, которая соединяется точно с такой же шестеренкой, к оси которой крепится второй трос. Данная система крепления обеспечивает зависимость стрелок только от своего редуктора.

Электронный велоспидометр.

Прибор может использоваться велосипедистами во время соревнований и повседневного тренинга для рационального распределения скоростных нагрузок.

По принципу действия велоспидометр (рис. 2) подобен частотомеру. Здесь используется пропорциональная зависимость механической скорости движения от частоты вращения колес. Фактически этим устройством частоту вращения преобразуют в напряжение, которое и определяет скорость движения велосипеда .

Преобразование частоты вращения в напряжение осуществляется с помощью датчика в виде пары контактов, которые размыкаются на короткое время за один оборот колеса.

С помощью вспомогательных цепей датчик формирует импульсы напряжения с частотой следования, равной частоте вращения колеса. В качестве датчика-выключателя использована кнопка В1. На схеме V2, V3 - транзисторы МП41; V4 - МП115.

Как видите схема предельно проста и доступна для реализации своими руками. Ну, конечно при наличии этих самых рук. А для всех тех, кто не хочет повторно изобретать колесо, и привык пользоваться не самопальными, а покупными брендовыми спортивными вещами, напоминаем, что любой аксессуар, а также и спортивную амуницию

Сегодня довольно сложно отыскать заядлого велосипедиста, который бы не интересовался данными о скорости передвижения на собственном байке, накатанным километражем и т.п. Получать эту и другую полезную информацию позволяет спидометр на велосипед. Давайте рассмотрим основные типы, достоинства и характеристики приспособлений данной категории.

Механический спидометр для велосипеда

Ради объективности стоит отметить, что в настоящее время подобные устройства практически не используются, поскольку являются морально устаревшими. Конструктивно такие приспособления состоят из троса, приводного колеса и циферблата. Для адекватного расчета данных о скорости колесико должно находиться в постоянном контакте с покрышкой колеса.

Спидометр на велосипед механического характера преобразовывает импульсы от вращения колеса в энергию, которая приводит в движение стрелку циферблата. Последняя перемещается под напором цилиндра, который выталкивается силой притяжения специального магнитного диска.

Электронный велоспидометр

В последние годы популярностью пользуются электронные приспособления для вычисления параметров движения двухколесного транспорта. Разделяют такие устройства на:

  1. Проводные: на спицу переднего колеса помещается магнитный элемент, на вилке крепится геркон, который служит средством для передачи данных на спидометр посредством проводной связи. Расчеты производятся на основе формул, которые изначально внесены в базу данных электронного устройства.
  2. Беспроводные: функционируют по тому же принципу, что и проводные системы. Единственное различие заключается в передаче данных посредством радиоканалов. Чаще всего беспроводной спидометр на велосипед становится выбором путешественников, экстремалов и спортсменов-профессионалов, которым приходится передвигаться в довольно сложных условиях.

Характеристики

Какие измерения должен производить хороший современный велоспидометр? Внимания заслуживают следующие пункты:

  1. Определение текущей скорости. Возможность расчета этого параметра присутствует во всех велосипедных спидометрах. Получение указанных данных дает возможность придерживаться определенного темпа езды.
  2. Расчет средней скорости позволяет определиться с оптимальным темпом езды по той или иной трассе.
  3. Максимальная скорость помогает сравнивать скорость движения на спуске и при перемещении по ровной местности.
  4. Километраж. Слежение за данным параметром позволяет рассчитывать собственные силы для преодоления нужной дистанции.
  5. Каденс определяет количество вращений педалей в течение минуты. Это дает возможность определиться с выбором оптимальной передачи для наиболее эффективной езды.
  6. Одометр вычисляет общий километраж, накатанный на велосипеде. Получение данных позволяет своевременно менять покрышки и не допустить их полный износ.
  7. Секундомер помогает осуществлять скоростные заезды на время, которые способствуют тренировке сердечно-сосудистой системы.
  8. Альтиметр полезен при установке спидометра на горный велосипед, поскольку дает возможность фиксировать рекорд высотных подъемов на двухколесном транспорте.
  9. Часы позволяют следить за временем в пути и планировать график поездки.

Как установить спидометр на велосипед?

Определившись с необходимыми параметрами устройства для расчета нужных показателей при передвижении на двухколесном транспорте, можно переходить непосредственно к его монтажу. Давайте рассмотрим по пунктам, как устанавливать спидометр на велосипед:

  1. Для начала на вынос руля монтируется крепежная подставка, куда в последующем будет крепиться приспособление.
  2. Геркон велоспидометра устанавливается на штанине вилки специальными стяжками.
  3. На спицу колеса монтируется магнитный элемент. Закреплять его следует максимально прочно на расстоянии не более 2-3 мм от снимающего показатели геркона.
  4. В завершение выполняется проверка надежности всех креплений.
  5. Спидометр на велосипед проходит отладку.

Перед эксплуатацией требуется предварительная настройка параметров работы вычислительного приспособления. Для этого в базу данных вносятся значения диаметра колес, их окружности.

Какие возможности спидометра могут быть полезны конкретному пользователю?

Велоспидометр стоит подбирать, исходя из способа езды и личных задач. Оптимальным вариантом при наличии горного байка станет прочная модель, которая уведомляет о средней и текущей скорости передвижения, преодоленной дистанции.

Велосипедистам, которые проходят подготовку к шоссейным состязаниям, стоит обратить внимание на более продвинутые приспособления с высокоточным секундомером, счетчиком калорий.

Что касается путешественников, то для них подойдет многофункциональный велосипедный спидометр, оснащенный навигатором, что позволит определиться с выбором оптимальных маршрутов.

После покупки нового велосипеда решил я его оснастить велокомпьютером, но китайские поделки покупать не стал по трём причинам:
1. Высокая цена
2. Отвратительное качество сборки
3. Ну, я же радиолюбитель!

И поэтому я поступил как настоящий радиолюбитель – собрал желаемый прибор самостоятельно.

В данной статье я расскажу вам, как самому собрать велокомпьютер на микроконтроллере. Данный велокомпьютер выполнен на микроконтроллере Attiny2313, в качестве дисплея использован однострочный ЖК индикатор на контроллере HD44780. Прибор умеет отображать текущую скорость, общее и промежуточное расстояния (отображаются в метрах). Общее расстояние, в отличии от промежуточного сохраняется в энергонезависимой памяти EEPROM. Схема велокомпьютера очень проста и не содержит дорогостоящих компонентов:

Дисплей подключён к микроконтроллеру по распространенному 4-х битному интерфейсу. Кнопки S1,S2,S3 (подтянуты десяти килоомными резисторами к плюсу питания) управляют прибором. Подстроечный резистор R6 регулирует контрастность дисплея. Светодиод HL1 индицирует подачу питания. В качестве динамика Ls1 можно использовать пьезоизлучатель. Транзистор VT1 – можно ставить любой биполярный n-p-n структуры, например КТ315 (я применил BC546B). Микроконтроллер Attiny2313 можно использовать с любыми буквенными индексами.

Зачем нужен внешний кварц микроконтроллеру, у которого есть свой тактовый генератор?
Наверное, у каждого из вас появился такой вопрос, и я на него постараюсь ответить. Без кварца работа устройства будет крайне не стабильна (неточность измерения, крякозяблики на дисплее и т.п.) потому, что встроенный тактовый генератор в микроконтроллере имеет большую “плавающую точку” и его частота постоянно колеблется. Если у вас нет такого кварца, не расстраивайтесь! Просто измените программу под тот кварц, который у вас есть. Впишите, в строчку $ crystal= частоту своего кварца и всё будет ОК. Но на “худой конец”, если у вас нет никакого кварца, используйте встроенный тактовый генератор (пример установки фьюз-битов внизу), конечно работать будет не совсем точно и стабильно.

После того как я нарисовал схему и подумал каким будет велокомпьютер, сел на свой любимый велик и поехал по городу – покупать радио детали по следующему списку:

  1. Микроконтроллер Attiny2313 1шт.
  2. Кнопки тактовые (без фиксации) 3шт.
  3. Резисторы номиналом 10 кОм 5шт.
  4. Резисторы номиналом 1 кОм 2шт.
  5. Резистор номиналом 100 Ом 1шт.
  6. Панелька под микроконтроллер DIP-20 1шт.
  7. Транзистор биполярный BC546B 1шт.
  8. Пьезоизлучатель 1шт.
  9. Кварц 4 МГц 1шт.
  10. Светодиод (синего свечения) 1щт.
  11. Построечный резистор номиналом 10 кОм 1шт.
  12. ЖК индикатор (дисплей) на контроллере HD44780 1*16 1шт.
  13. Керамические конденсаторы 18 пФ 2шт.
  14. Керамический конденсатор 0.1 мкФ 1шт.
  15. Электролитический конденсатор 100 мкФ 1шт.
  16. Штекер 2.5 1шт.
  17. Гнездо для штекера 2.5 1шт.
  18. Гнездо MiniUSB 1шт.
  19. Пластмассовый корпус 85x60x35мм 1шт.
  20. Крепёж на руль велосипеда 1шт.
  21. Кнопка с фиксацией 1шт.
  22. Геркон 1шт.

Корпус, который я купил для велокомпьютера:

Макетная плата, термоусадка, АКБ и метр провода у меня были.
Приехавши домой сразу взялся за сборку велокомпьютера. Первым делом взялся за корпус. В корпусе надо сделать прямоугольную дыру размером 15x60мм.

Возможно, вы спросите, а как ты делал такую дыру? Да очень просто! Сначала размечаем карандашом, где будем делать дырку, потом сверлилкой сверлим по контуру отверстия когда весь контур высверлили выламываем кусок пластмассы и обрабатываем всё напильником. Вот что получилось у меня:

Кстати, все остальные отверстия я делал по ходу сборки. Изнутри корпуса на дыру приклеил кусочек органического стекла, чтобы пыль и влага не попадали на дисплей.

Вид сзади (без крышки):

У меня прибор питается от аккумулятора телефона Nokia на 3.7v. Зарядка осуществляется через MiniUSB порт, подключённый прямо к аккумулятору. Возможно, вы скажете, это же не правильно! И будете правы, для этого дела есть специальные микросхемы но я таковой микрухи не нашёл и пришлось довольствоваться тем что было. Но как-никак зарядка идёт, и за два часа заряда мой аккумулятор заряжается полностью. В рабочем режиме с включенной подсветкой дисплея велокомпьютер потребляет ~30мА.

Установка велокомпьютера на велосипед

Чтобы считать, расстояние и скорость велоспидометру нужен, так сказать “орган восприятия”. Геркон - это и есть этот “орган”, устанавливается он на раме велосипеда рядом с колесом, на спицах колеса устанавливается магнит. Чтобы когда колесо делало полный оборот, магнит “проходил” напротив геркона и “замыкал” его, тем самым формируя импульс который нужен велокомпьютеру для расчёта расстояния и скорости. На схеме указано, где подключать геркон к прибору. Я геркон припаял на небольшой кусочек макетной платы, припаял к нему провода и усадил на него термоусадку. И закрепил это всё на раме велосипеда с помощью пластмассовых стяжек.

Пример установки магнита на спицы колеса:

Велокомпьютер я закрепил посредине руля велосипеда:

Описание устройства

При включении устройства на дисплее появляется приветствие и информация о версии и авторе, потом в левой части дисплея отображается промежуточное расстояние, а в правой скорость (главный экран).

Кнопка S1 – при нажатии сохраняется общее расстояние в энергонезависимой памяти EEPROM, в течение секунды на дисплее отображается надпись “All:” а после её общее расстояние и надпись “Save”, звучит звуковой сигнал, после чего велокомпьютер возвращается к подсчёту расстояния и скорости (главный экран).

Да, да! Вы не ошиблись (смотря на фотографию выше), за несколько дней я проехал 191км! Потому что сегодня (21.08.2012), до школы осталось 11 и дабы проводить лето решил сделать “небольшую” покатушку за город.

Кнопка S2 - при нажатии обнуляется промежуточное расстояние, на дисплее отображается сообщение “Total clear!”, звучит звуковой сигнал, после чего велокомпьютер возвращается к подсчёту расстояния и скорости (главный экран).

Кнопка S3 - при нажатии в течение секунды на дисплее отображается надпись “All:” а после её общее расстояние и звучит звуковой сигнал, после чего велокомпьютер возвращается к подсчёту расстояния и скорости (главный экран).

Настройка велокомпьютера

Чтобы велокомпьютер отображал правильное расстояние, и скорость он должен знать, какое расстояние проезжает велосипед за один оборот колеса (иначе прибор будет просто неправильно считать расстояние и скорость), это расстояние хранится в константе Coleso (у меня по умолчанию 2.08 метра). Для настройки велокомпьютера, измерьте длину колеса своего велосипеда в сантиметрах полученное значение переведите в метры и впишите его в константу Coleso , перекомпилируйте программу с новыми значениями и прошейте ею велокомпьютер.

Если кто это сделать не в состоянии, присылайте мне на e-mail длину своего колеса, сделаю прошивку под ваш велосипед.

Прошивка МК велокомпьютера

Прошивка для велокомпьютера находится в файлах к статье и называется t2313veloC.HEX, прошивку писал в среде (исходник прилагается).

В файлах к статье есть проект данного девайса в симуляторе . Но предупреждаю, что в симуляторе прибор работает очень медленно! В протеусе разве что светодиодами мигать можно (без глюков).

Видео работы велоспидометра:

Заключение

В заключении хотелось бы сказать, что велокомпьютер вышел отличный и не дорогой, затраты составили 113400 бел/руб. Для примера: самый дешёвый китайский велокомпьютер стоит не менее 200000 бел/руб, который я видел. Да и вообще своё – это сделанное для себя, качественно и с любовью, а не китайское г…но, которое на следующий день после покупки сломается. Сборка своего велокомпьютера мне доставила удовольствие, а его эксплуатация доставляет мне ещё большее удовольствие.

И смотрите больше на дорогу чем на велокомпьютер, всяко бывает… И удачи вам на дороге и в электронике!

Ниже вы можете скачать исходники, прошивку, проект в Proteus

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
МК AVR 8-бит

ATtiny2313

1 В блокнот
VT1 Биполярный транзистор

BC546B

1 В блокнот
С1 Конденсатор 0.1 мкФ 1 В блокнот
С2, С3 Конденсатор 18 пФ 2 В блокнот
С4 Электролитический конденсатор 100 мкФ 1 В блокнот
R1-R5 Резистор

10 кОм

5 В блокнот
R6 Переменный резистор 10 кОм 1 В блокнот
R7, R8 Резистор

После покупки нового велосипеда решил я его оснастить велокомпьютером, но китайские поделки покупать не стал по трём причинам: 1. Высокая цена 2. Отвратительное качество сборки 3. Ну, я же радиолюбитель!

И поэтому я поступил как настоящий радиолюбитель — собрал желаемый прибор самостоятельно.

В данной статье я расскажу вам, как самому собрать велокомпьютер на микроконтроллере. Данный велокомпьютер выполнен на микроконтроллере Attiny2313, в качестве дисплея использован однострочный ЖК индикатор на контроллере HD44780. Прибор умеет отображать текущую скорость, общее и промежуточное расстояния (отображаются в метрах). Общее расстояние, в отличии от промежуточного сохраняется в энергонезависимой памяти EEPROM. Схема велокомпьютера очень проста и не содержит дорогостоящих компонентов:

Дисплей подключён к микроконтроллеру по распространенному 4-х битному интерфейсу. Кнопки S1,S2,S3 (подтянуты десяти килоомными резисторами к плюсу питания) управляют прибором. Подстроечный резистор R6 регулирует контрастность дисплея. Светодиод HL1 индицирует подачу питания. В качестве динамика Ls1 можно использовать пьезоизлучатель. Транзистор VT1 — можно ставить любой биполярный n-p-n структуры, например КТ315 (я применил BC546B). Микроконтроллер Attiny2313 можно использовать с любыми буквенными индексами.

Зачем нужен внешний кварц микроконтроллеру, у которого есть свой тактовый генератор? Наверное, у каждого из вас появился такой вопрос, и я на него постараюсь ответить. Без кварца работа устройства будет крайне не стабильна (неточность измерения, крякозяблики на дисплее и т.п.) потому, что встроенный тактовый генератор в микроконтроллере имеет большую «плавающую точку» и его частота постоянно колеблется. Если у вас нет такого кварца, не расстраивайтесь! Просто измените программу под тот кварц, который у вас есть. Впишите, в строчку $ crystal= частоту своего кварца и всё будет ОК. Но на «худой конец», если у вас нет никакого кварца, используйте встроенный тактовый генератор (пример установки фьюз-битов внизу), конечно работать будет не совсем точно и стабильно.

После того как я нарисовал схему и подумал каким будет велокомпьютер, сел на свой любимый велик и поехал по городу — покупать радио детали по следующему списку:

  1. Микроконтроллер Attiny2313 1шт.
  2. Кнопки тактовые (без фиксации) 3шт.
  3. Резисторы номиналом 10 кОм 5шт.
  4. Резисторы номиналом 1 кОм 2шт.
  5. Резистор номиналом 100 Ом 1шт.
  6. Панелька под микроконтроллер DIP-20 1шт.
  7. Транзистор биполярный BC546B 1шт.
  8. Пьезоизлучатель 1шт.
  9. Кварц 4 МГц 1шт.
  10. Светодиод (синего свечения) 1щт.
  11. Построечный резистор номиналом 10 кОм 1шт.
  12. ЖК индикатор (дисплей) на контроллере HD44780 1*16 1шт.
  13. Керамические конденсаторы 18 пФ 2шт.
  14. Керамический конденсатор 0.1 мкФ 1шт.
  15. Электролитический конденсатор 100 мкФ 1шт.
  16. Штекер 2.5 1шт.
  17. Гнездо для штекера 2.5 1шт.
  18. Гнездо MiniUSB 1шт.
  19. Пластмассовый корпус 85×60×35мм 1шт.
  20. Крепёж на руль велосипеда 1шт.
  21. Кнопка с фиксацией 1шт.
  22. Геркон 1шт.

Макетная плата, термоусадка, АКБ и метр провода у меня были. Приехавши домой сразу взялся за сборку велокомпьютера. Первым делом взялся за корпус. В корпусе надо сделать прямоугольную дыру размером 15×60мм.

Возможно, вы спросите, а как ты делал такую дыру? Да очень просто! Сначала размечаем карандашом, где будем делать дырку, потом сверлилкой сверлим по контуру отверстия когда весь контур высверлили выламываем кусок пластмассы и обрабатываем всё напильником. Вот что получилось у меня:

Кстати, все остальные отверстия я делал по ходу сборки. Изнутри корпуса на дыру приклеил кусочек органического стекла, чтобы пыль и влага не попадали на дисплей.

Вид сзади (без крышки):

У меня прибор питается от аккумулятора телефона Nokia на 3.7v. Зарядка осуществляется через MiniUSB порт, подключённый прямо к аккумулятору. Возможно, вы скажете, это же не правильно! И будете правы, для этого дела есть специальные микросхемы но я таковой микрухи не нашёл и пришлось довольствоваться тем что было. Но как-никак зарядка идёт, и за два часа заряда мой аккумулятор заряжается полностью. В рабочем режиме с включенной подсветкой дисплея велокомпьютер потребляет ~30мА.

Установка велокомпьютера на велосипед

Чтобы считать, расстояние и скорость велоспидометру нужен, так сказать «орган восприятия». Геркон — это и есть этот «орган», устанавливается он на раме велосипеда рядом с колесом, на спицах колеса устанавливается магнит. Чтобы когда колесо делало полный оборот, магнит «проходил» напротив геркона и «замыкал» его, тем самым формируя импульс который нужен велокомпьютеру для расчёта расстояния и скорости. На схеме указано, где подключать геркон к прибору. Я геркон припаял на небольшой кусочек макетной платы, припаял к нему провода и усадил на него термоусадку. И закрепил это всё на раме велосипеда с помощью пластмассовых стяжек.

Пример установки магнита на спицы колеса:

Велокомпьютер я закрепил посредине руля велосипеда:

Описание устройства

При включении устройства на дисплее появляется приветствие и информация о версии и авторе, потом в левой части дисплея отображается промежуточное расстояние, а в правой скорость (главный экран).

Информация о версии:

Главный экран:

Кнопка S1 — при нажатии сохраняется общее расстояние в энергонезависимой памяти EEPROM, в течение секунды на дисплее отображается надпись «All:» а после её общее расстояние и надпись «Save», звучит звуковой сигнал, после чего велокомпьютер возвращается к подсчёту расстояния и скорости (главный экран).

Да, да! Вы не ошиблись (смотря на фотографию выше), за несколько дней я проехал 191км! Потому что сегодня (21.08.2012), до школы осталось 11 и дабы проводить лето решил сделать «небольшую» покатушку за город.

Кнопка S2 — при нажатии обнуляется промежуточное расстояние, на дисплее отображается сообщение «Total clear!», звучит звуковой сигнал, после чего велокомпьютер возвращается к подсчёту расстояния и скорости (главный экран).

Кнопка S3 — при нажатии в течение секунды на дисплее отображается надпись «All:» а после её общее расстояние и звучит звуковой сигнал, после чего велокомпьютер возвращается к подсчёту расстояния и скорости (главный экран).

Настройка велокомпьютера

Чтобы велокомпьютер отображал правильное расстояние, и скорость он должен знать, какое расстояние проезжает велосипед за один оборот колеса (иначе прибор будет просто неправильно считать расстояние и скорость), это расстояние хранится в константе Coleso (у меня по умолчанию 2.08 метра). Для настройки велокомпьютера, измерьте длину колеса своего велосипеда в сантиметрах полученное значение переведите в метры и впишите его в константу Coleso , перекомпилируйте программу с новыми значениями и прошейте ею велокомпьютер.

Если кто это сделать не в состоянии, присылайте мне на e-mail длину своего колеса, сделаю прошивку под ваш велосипед.

Прошивка МК велокомпьютера

Прошивка для велокомпьютера находится в файлах к статье и называется t2313veloC.HEX, прошивку писал в среде BASCOM-AVR (исходник прилагается). Пример установки фьюз-битов на внешний кварц 4МГц:

В файлах к статье есть проект данного девайса в симуляторе Proteus. Но предупреждаю, что в симуляторе прибор работает очень медленно! В протеусе разве что светодиодами мигать можно (без глюков).

Видео работы велоспидометра:

Заключение

В заключении хотелось бы сказать, что велокомпьютер вышел отличный и не дорогой, затраты составили 113400 бел/руб. Для примера: самый дешёвый китайский велокомпьютер стоит не менее 200000 бел/руб, который я видел. Да и вообще своё — это сделанное для себя, качественно и с любовью, а не китайское г…но, которое на следующий день после покупки сломается. Сборка своего велокомпьютера мне доставила удовольствие, а его эксплуатация доставляет мне ещё большее удовольствие.

И смотрите больше на дорогу чем на велокомпьютер, всяко бывает… И удачи вам на дороге и в электронике!

Ниже вы можете скачать исходники, прошивку, проект в Proteus

Скачать список элементов (PDF)

Так можно назвать эту конструкцию, потому что одновременно с индикацией скорости движения она подсчитывает и пройденное расстояние, как это делают спидометры мотоциклов и автомобилей. Схема спидометра показана на рисунке.

Датчиком в нем является выключатель SА1, обозначенный на схеме несколько необычно. Это обозначение принадлежит геркону — герметизированному контакту. Геркон представляет собой запаянную стеклянную колбу, внутри которой размещены два контакта — концы их находятся друг над другом на небольшом расстоянии. В исходном состоянии контакты разомкнуты. Но стоит приблизить к геркону постоянный магнит так, чтобы контакты оказались в его поле (рис. б), как концы контактов намагнитятся, притянутся друг к другу и замкнутся. При удалении магнита контакты вновь размыкаются (рис. а).

Установив геркон на передней вилке велосипеда и прикрепив магнит к спицам колеса (рис. в), получим датчик скорости. При вращении колеса магнит будет проходить вблизи геркона и магнитным полем замыкать его контакты. За каждый оборот колеса контакты замкнутся один раз. Чем больше скорость вращения колеса, а значит, скорость движения велосипеда, тем чаще будут замыкаться контакты геркона. Остается подсчитать число замыканий в единицу времени и определить скорость. А зная длину окружности колеса, нетрудно определить и пройденный путь. Но делать эти подсчеты будет электроника. Итак, вернемся к схеме устройства. Контакты датчика SА1 подключены к зажимам ХТ1 и ХТ2. Периодически замыкаясь, контакты соединяют левый по схеме вывод конденсатора С1 с общим проводом (плюс питания). При этом каждый раз конденсатор, заряжающийся в перерывах между замыканиями через резисторы R1 и R2, разряжается через резистор R2 и контакты. В итоге в момент размыкания контактов на резисторе R2 появляется импульс напряжения отрицательной полярности. Через диод VD2 он подается на специальное формирующее устройство, собранное на транзисторах VT1, VТ2. Это ждущий мультивибратор, нужен он вот для чего.

Длительность замыкания контактов геркона и длительность пауз между замыканиями непостоянна и зависит от скорости вращения колеса. Так же непостоянна будет и длительность импульсов, выделяющихся на резисторе R2. «Обрабатывать» такие импульсы сложно, поэтому и поставлен формирователь импульсов — ждущий мультивибратор. Независимо от колебаний длительности и амплитуды входных импульсов выходные будут строго постоянны. Длительность их зависит от емкости конденсатора С2, амплитуда — от напряжения питания, подаваемого на ждущий мультивибратор. Частота же следования импульсов определяется частотой замыкания контактов геркона.

Выходные импульсы мультивибратора, снимаемые с резистора R8, поступают далее на каскад, выполненный на транзисторе VТЗ,— это эмиттерный повторитель. Амплитуда импульсов на эмиттере транзистора практически равна амплитуде импульсов на базе. При каждом импульсе через резистор R9 и стрелочный индикатор РА1 протекает ток, и стрелка индикатора отклоняется. Чем чаще следуют импульсы, тем больше средний ток через индикатор, тем больше угол отклонения стрелки, свидетельствующий об увеличении скорости движения велосипеда.

Но ведь в промежутках между импульсами стрелка может возвращаться на нулевую отметку шкалы, иначе говоря, стрелка может колебаться, затрудняя отсчет показаний. Чтобы этого не происходило, параллельно индикатору поставлен оксидный (раньше называли электролитический) конденсатор СЗ. Он заряжается во время каждого импульса и в паузах между импульсами сохраняет напряжение. Стрелка индикатора не успевает возвращаться на нуль, и колебания ее едва заметны (если, конечно, стабильна скорость движения велосипеда). Предельная скорость, которую может измерить спидометр, зависит от тока полного отклонения стрелки индикатора и сопротивления резистора R9 (поэтому он и обозначен знаком подбора параметра — «звездочкой»).
Теперь об определении пройденного расстояния. Как вы уже знаете, оно зависит от длины окружности колеса велосипеда и числа его оборотов, то есть числа импульсов, поступивших с датчика. Эти импульсы и нужно подсчитать. Делается это с помощью каскада на транзисторе VТ4.
На базу транзистора поступают импульсы с эмиттерного повторителя через резистор R10 (он ограничивает ток базы и подбирается в зависимости от коэффициента передачи используемого транзистора). При каждом импульсе транзистор VТ4 открывается и подключает электромеханический счетчик В1 к источнику питания GВ1 (естественно, когда питание включено выключателем SА2). Сколько импульсов поступит, на столько единиц изменятся показания счетчика. Остается умножить это значение на длину окружности колеса — и получится цифра пройденного расстояния.
Хорошо, если счетчик имеет кнопку сброса показаний, тогда достаточно делать это перед каждым этапом и по прохождении этапа заносить показания в блокнот. Если же кнопки сброса нет, придется записывать показания счетчика перед каждым этапом и по ним определять протяженность того или иного отрезка пути.

Питается спидометр от источника напряжением 9 В. Поскольку оно со временем падает (источник истощается), для питания самого спидометра применен простейший стабилизатор напряжения, состоящий из стабилитрона VD1 и резистора R11. Напряжение на стабилитроне будет около 5,6 В даже при изменении питающего напряжения на 1,5—2 В.

Какие детали понадобятся для этого прибора? Геркон желательно взять с возможно большей чувствительностью и небольших габаритов, например, КЭМ-1А. Магнит тоже должен быть небольшой, но достаточно сильный, чтобы он мог замыкать контакты геркона на расстоянии не ближе 10 мм. Устанавливая эти детали, помните, что при вращении колеса центр магнита должен проходить точно напротив контактов (как правило, они расположены посередине колбы).

А как быть, если геркона нет? Выход простой — воспользоваться любыми электрическими контактами, способными замыкаться при вращении колеса. Это может быть, например, микровыключатель кнопочный, на кнопку которого будет надавливать установленная на колесе металлическая пластина. Подойдет и такой вариант — на вилке прикрепите пружинящую пластину, изолировав ее от корпуса велосипеда, а на спицах установите такую же пластину, надежно соединенную с корпусом. При вращении колеса пластины будут касаться друг друга один раз за оборот и замыкать цепь конденсатора С1 прибора. Все резисторы — МЛТ-0,25, за исключением R11 — он МЛТ-0,5. Оксидные конденсаторы — К50-6, но подойдут К50-3 или другие, на номинальное напряжение не ниже указанного на схеме. Вместо диода Д9Б можно использовать любой другой диод из серии Д9 (либо из устаревшей серии Д2). Диод Д226Д (он защищает транзистор VТ4 от экстратоков, возникающих из-за индуктивной нагрузки — обмотки счетчика) можно заменить любым другим из серий Д226 или Д7.

Транзисторы VT1, VТ2 — любые из серий МП39—МП42. Транзистор VТЗ должен быть обязательно кремниевый, структуры p-n-p с возможно меньшим обратным током коллектора. Поэтому вместо КТ361А наиболее подходит КТ347А, но в крайнем случае допустимо поставить МП115. При последней замене через стрелочный индикатор может протекать начальный ток, вызывающий заметное отклонение стрелки. Снизить его можно только подбором транзистора с меньшим обратным током коллектора. Если же такой возможности нет, придется учитывать это отклонение на малых скоростях движения и вносить поправку в показания спидометра.

Транзистор VТ4 желательно применить серий МП25, МП26 — они допускают больший ток коллектора. В крайнем случае подойдет МП42Б.
Стрелочный индикатор — любого типа, с током полного отклонения стрелки от 100 мкА до 1 мА и рассчитанный на работу в условиях вибрации и в горизонтальном положении. Электромеханический счетчик — МЭС54, паспорт РС2.720.002 или РС2.720.004 (он более экономичен). Подойдут и другие счетчики небольших габаритов, работающие при напряжении 2—4 В и потребляющие возможно меньший ток.

Источником питания могут быть две батареи 3336 или шесть элементов 373, соединенные последовательно — все зависит от габаритов корпуса, который удастся подобрать для конструкции. Налаживание прибора начинают с проверки напряжения на стабилитроне. Оно должно быть около 5,6 В. Если оно намного меньше, нужно измерить ток через стабилитрон и установить его подбором резистора R11 примерно равным 3—4 мА.
Затем проверяют спидометр. Периодически замыкая входные зажимы пинцетом, убеждаются в отклонении стрелки индикатора. Подключив к зажимам кнопочный выключатель, нажимают на его кнопку с частотой примерно три раза в секунду, что соответствует скорости движения велосипеда около 20 км/ч. Подбором резистора R9 добиваются отклонения стрелки индикатора на конечную отметку шкалы. Более точно нужное сопротивление резистора можно установить во время контрольных гонок на дистанции известной протяженности.

Можно поступить и так. Установив датчик на заднее колесо и перевернув велосипед вверх колесами, вращают педали с постоянной скоростью, равной примерно 20 км/ч. Впаяв вместо постоянного резистора R9 переменный сопротивлением 22 кОм, устанавливают им стрелку индикатора на конечную отметку шкалы. Измеряют получившиееся сопротивление и впаивают в устройство резистор с таким сопротивлением.
В последнюю очередь подбором резистора R10 устанавливают ток через счетчик, несколько превышающий его ток срабатывания (с учетом возможного снижения напряжения питания до 7 В).

Также для замера пробега можно использовать любой ненужный микрокалькулятор. Для этого нужно аккуратно подпаять провод от геркона к кнопке (=) и замерить длину окружности колеса. Например, длина окружности 1метр 75см. Вводим в калькуляторе 1.75 и нажимаем (+) теперь можно ехать, на калькуляторе будет отображаться пробег в метрах.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Ford Crown Victoria: характеристики и отзывы Ford Crown Victoria: характеристики и отзывы Французские марки автомобилей Ликвидированные марки авто из Франции Французские марки автомобилей Ликвидированные марки авто из Франции Cтоп линия – как правильно останавливаться? Cтоп линия – как правильно останавливаться?