Высоколинейный умзч с большим выходным сопротивлением. Измерение чувствительности и номинальной выходной Сопротивление усилителя

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Высоколинейный УМЗЧ с большим выходным сопротивлением

А. ОРЛОВ, г. Иркутск

Автором предложен интересный вариант усилителя мощности с высоким выходным сопротивлением. Его особенность - в использовании комбинации цепей отрицательной обратной связи. Применение определённых типов транзисторов способствовало минимизации нелинейных искажений. Это подтверждено и многочастотным методом измерения интермодуляционных искажений, совпадающим с субъективными оценками разрешения. Ограничения в выборе АС для работы с таким усилителем неоднократно обсуждались на страницах журнала - проблемы устраняют правильным выбором кроссовера, динамических головок и их акустического оформления.

В настоящее время усилители мощности звуковой частоты (УМЗЧ) подразделяются по выходному сопротивлению: с низким выходным сопротивлением и УМЗЧ с высоким выходным сопротивлением. С точки зрения теории электрических цепей УМЗЧ первого типа - источник напряжения, управляемый напряжением (ИНУН), а УМЗЧ второго типа - источник тока, управляемый напряжением (ИТУН). Преимущества и недостатки каждого из них достаточно подробно освещены как в печатных изданиях, так и в Интернете, и далее здесь рассматриваться не будут. Следует отметить, что автор предлагаемого УМЗЧ является сторонником именно "токового" способа управления динамическими головками громкоговорителя [ 1 ], и далее речь пойдёт в основном об усилителях с высоким выходным сопротивлением (УМ-ИТ).

Известен УМЗЧ с "плавающим" источником питания (непосредственно не соединённым с общим проводом усилителя), в котором к выходу ОУ подключён выходной каскад на биполярных транзисторах, включённых по схеме с общим эмиттером . В отличие от классического выходного каскада на транзисторах, включённых по схеме с общим коллектором, такой каскад обладает усилением по напряжению. Такая архитектура УМЗЧ и легла в основу предлагаемого усилителя, поскольку позволяет простыми средствами реализовать УМЗЧ с высоким выходным сопротивлением и необходимым коэффициентом усиления по напряжению. Фактически это мощный генератор тока с транзисторами в режиме класса АВ с большим током покоя, выполненный на основе усилителя и предназначенный для работы на широкополосный громкоговоритель либо акустическую систему с фильтрами, рассчитанными под высокое выходное сопротивление. Применённые в УМ-ИТ схемные решения позволили заметно снизить входную и выходную нелинейность и получить малые нелинейные искажения без применения цепи общей отрицательной обратной связи (ООС). Отличительной особенностью предлагаемого усилителя является использование в выходном каскаде каскодного включения мощных транзисторов (ОЭ-ОБ), что позволило получить высокую линейность, быстродействие и большое выходное сопротивление. Однако, как будет показано ниже, такая архитектура легко трансформируется в классический УМЗЧ с низким выходным сопротивлением. Если же говорить про субъективные оценки качества, то достигнуто весьма прозрачное звучание воспроизводимой музыки, и эта конструкция просто "отправила" предыдущие авторские проекты на разборку.

Обычно современный источник звукового сигнала имеет отличное от нуля выходное сопротивление, и если оно относительно велико, то классический "параллельный" повторитель вносит так называемые "интерфейсные" искажения. На рис. 1 показана упрощённая схема ИТУН, в котором такой вид искажений практически полностью устранён.

На транзисторах VT1-VT6 и резисторах R5, R6 выполнен параллельный повторитель (ПП), в котором входной каскад реализован по схеме Шиклаи (Sziklai) на транзисторах VT1-VT4, что позволило существенно снизить входную нелинейность в зависимости от выходного сопротивления источника сигнала . Для стабилизации рабочей точки транзисторов ПП применено токовое смещение, реализованное на основе плавающего источника напряжения G1 и резисторах R5, R6.

В отличие от УМЗЧ , где использовано смещение напряжением (так называемая "батарейка"), смещение током позволяет повысить надёжность работы без принятия специальных мер по обеспечению термостабилизации транзисторов ПП. Мощные транзисторы VT7, VT8, как уже упоминалось, включены по схеме с общей базой, что в совокупности с плавающим источником питания (G2, G3) обеспечивает широкую полосу пропускания и высокое выходное сопротивление (десятки и сотни килоом). Поскольку напряжение на коллекторах транзисторов VT5, VT6 строго фиксировано напряжениями на эмиттерах транзисторов VT7, VT8, то такой каскад при монтаже транзисторов на общем теплоотводе не подвержен эффекту саморазогрева, даже в отсутствие эмиттерных резисторов. Реальные эксперименты с увеличением тока покоя каскада до 3...4 А подтверждают надёжность такого способа смещения.

Отдельно следует сказать про необычное включение конденсаторов С1 и С2, ведь с первого взгляда можно посчитать это классической "вольтдобав-кой", но это не так. Конденсаторы С1, С2, будучи включёнными между низко-импедансными узлами - эмиттерами VT5, VT6 и эмиттерами VT1, VT2, для сигнала исключают местную токовую ОС и одновременно обеспечивают обратную связь по вычитанию искажений (ОСВИ). Введение этих конденсаторов приводит к возрастанию выходного напряжения на 0,5...0,7 дБ и снижению нелинейных искажений на выходе УМ-ИТ на 20...30 дБ, причём подобного применения такой "гибридной" отрицательной ОС автору ранее встречать не доводилось. Конденсатор СЗ дополнительно стабилизирует напряжение между базами транзисторов VT5, VT6 в динамическом режиме.

К недостаткам архитектуры УМЗЧ на рис. 1 следует отнести несколько худший КПД. Это связано с тем, что эмиттеры транзисторов VT3, VT4 подключены перекрёстно к эмиттерам транзисторов VT8, VT7 и ток покоя транзисторов VT7, VT8 превышает ток покоя
транзисторов VT5, VT6 на эмиттерный ток транзисторов VT3, VT4. Этот ток зависит от выбора номиналов резисторов R1, R2 и R5, R6, и такое ветвление тока приводит к снижению КПД каскада и большему нагреву мощных транзисторов VT7, VT8, что увеличивает требования к охлаждению УМЗЧ. Ток покоя зависит от сопротивления резисторов R1-R4 и напряжения источника G1 и может регулироваться в довольно широких пределах.

На рис. 2 показан способ трансформации УМ-ИТ в УМЗЧ с низким выходным сопротивлением.
Здесь использовано плавающее подключение нагрузки RH, и её "холодный" вывод подключён к точке соединения эмиттеров VT5, VT6, а коэффициент усиления УМЗЧ по напряжению задан отношением резисторов: Ку = ROC2/Roci .

Основные

Технические характеристики УМ

Номинальное входное напряжение, В 2,3

Номинальная выходная мощность, Вт, на нагрузке 8 0м... .20,5

Максимальная выходная мощность, Вт, на нагрузке

Коэффициент усиления по

Напряжению, дБ 18

Полоса усиления, Гц 0,1...3-105

Входное сопротивление,

Нелинейные искажения, %, при уровне -1 дБ от ограничения 0,0055

Интермодуляционные искажения, %, при уровне

2 дБ от ограничения 0,0033

Отношение сигнал/шум, дБ,

Не хуже 100

Полная схема УМ-ИТ представлена на рис. 3.

Во входном каскаде (VT1, VT2) применены комплементарные пары биполярных транзисторов Hitachi 2SB647 и 2SD667, а в качестве транзисторов VT3-VT8 - приборы Motorola MJE15030 и MJE15031, MJL21193 и MJL21194. На элементах Т1, VD1-VD4, DA1, R1-R3,
+26 В
С1 -С8 и R10, R11 собран источник токового смещения, формирующий необходимое для работы транзисторов постоянное напряжение 6,5 В, которое можно регулировать резистором R2. Входной сигнал подаётся через цепь защиты от помех R4R5C9 на базы транзисторов VT1, VT2. Сопротивление резистора R9 намеренно уменьшено в два раза по сравнению с сопротивлением резистора R8, что позволило снизить нелинейные искажения усилителя в режиме большого сигнала.

Поскольку падение напряжения между эмиттерами транзисторов VT5,
VT6 и эмиттерами транзисторов VT1, VT2 не превышает 600 мВ, а приложенное к конденсатору С12 напряжение не превышает 1300 мВ, то в качестве С12- С14 были использованы низковольтные (на 4,5 В) сверхъёмкие конденсаторы "Supercap" от компании AVX - BZ054B223ZSBAE . Конденсаторы СЮ, С11, С15 и дроссель L1 повышают устойчивость усилителя и снижают требования к качеству монтажа конструкции.

Дроссель L1 желательно выполнить на замкнутом магнитопроводе или с магнитным экранированием, а его ак-
тивное сопротивление не должно быть более 0,1 Ом. На элементах ТЗ, VD6- VD9, R14, С18-С24 выполнен плавающий источник питания с так называемой "виртуальной" средней точкой (элементы С16, С17, VT9, VT10, VD5, R12, R13). Данное решение заимствовано из схемотехники транзисторных усилителей QUAD и позволяет отказаться от системы защиты АС, к тому же, по мнению автора, с УМЗЧ и "виртуальной" средней точкой звучание лучше. В то же время УМ-ИТ может работать также и от классического источника питания.

С помощью подстроечного резистора R13 балансируют усилитель по постоянному току, добиваясь равенства напряжения коллекторов транзисторов VT7, VT8 относительно общего провода УМЗЧ. В цепях питания плёночные конденсаторы отсутствуют, при этом усилитель сохраняет хорошую устойчивость. Ток покоя транзисторов оконечного каскада VT7, VT8 составляет 800 мА и для охлаждения теплоотводов применены компьютерные вентиляторы (на 12 В), которые для снижения числа оборотов вращения запитаны через интегральные стабилизаторы на микросхемах 7809 (на схеме не показаны). Для защиты от помех, проникающих со стороны блока питания, служит синфазный фильтр, выполненный на трансформаторе Т2; его обмотки намотаны на ферритовом кольце М2000НМ (или близком аналоге, например N87) с внешним диаметром 28...40 мм и содержат по 18 витков провода диаметром 1 мм.


На фото рис. 4 представлен монтаж элементов УМЗЧ, выполненный навесным способом без применения печатных плат. Все транзисторы усилителя расположены на общем теплоотводе рядом друг с другом, благодаря чему и достигается хорошая температурная стабильность. Мощные транзисторы VT7, VT8 прикреплены к теплоотводу через изолирующие прокладки из оксида алюминия и прикрыты сверху медной пластиной-экраном; эта мера позволяет несколько снизить уровень излучения выходного каскада.

Медная пластина закрыта текстолитовой пластиной толщиной 1,5 мм, поверх которой приклеены оксидные конденсаторы С16, С17. Транзисторы VT3-VT8 крепят на теплоотвод также через изолирующие керамические прокладки. Транзисторы VT1, VT2 через термопасту закреплены поверх транзисторов VT3, VT4. В качестве датчика тока Rc применён мощный толстоплёночный резистор Caddock МР930, который крепится на том же теплоотводе, что и транзисторы VT1-VT6. Конструкция усилителя в сборе со снятой верхней крышкой показана на фото рис. 5.

В УМЗЧ использованы хорошо зарекомендовавшие в звуковых устройствах оксидные конденсаторы Panasonic FC (С6), ELNA Silmic II (С7), Rubycon Black Gate FK (C8), Nichicon KG (C16, C17) и
Nippon Chemi-Con KMG (C18, C19). Bee плёночные конденсаторы - полипропиленовые: Wima FKP2 (C9-С11, С15) и Rita РНЕ426 (С1-С5, С20-С24). Резисторы - Vishay Dale (R5- R8, R10, R11), Caddock MP930 (RC), Firstronics RM (R3, R4, R9, R12), Phoenix Passive Components PR01 (R1, R14) и Bourns 3299W (R2, R13).

Каждый канал усилителя питается от отдельных сетевых трансформаторов Т1 и ТЗ. Поскольку использовано "плавающее" питание, желательно применять трансформаторы с минимальной ёмкостью между сетевой и вторичной обмотками. Широко используемые в аудиотехнике трансформаторы с кольцевым магнитопроводом из-за повышенной межобмоточной ёмкости здесь применять не следует. В качестве Т1 и ТЗ автором были использованы изделия от фирмы Pro-Power. В этих трансформаторах первичная и вторичная обмотки пространственно разнесены, а

Рис. 5
реально измеренная ёмкость между ними не превышает 18...28 пФ.

В ходе многочисленных экспериментов с различными активными элементами были опробованы некоторые типы транзисторов и проверялись следующие элементы в парах (см. рис. 3).

Транзисторы VT1, VT2 - 2SA970 и 2SC2240; 2SA1015 и 2SC1815; 2SA1145 и 2SC2705; ВС550 и ВС560; 2SA1360 и 2SC3423; 2SA1370 и 2SC3467; 2SA1380 и 2SC3502; 2SB649A и 2SD669A;

КТА1024 и КТС3206; КТА1268 и

КТС3200; 2N5401 и 2N5551; MJE340 и MJE350; ВС639 и ВС640; 2SB647 и 2SD667.

Транзисторы VT3, VT4 - 2SA1930 и 2SC5171; 2SB649A и 2SD669A;

Транзисторы VT5, VT6 - 2SB817 и 2SD1047; MJL21193 и MJL21194;

MJE15030 и MJE15031; BD911 и BD912.


Однако лучшим по результатам измерений, как и по звучанию, оказался именно комплект, указанный на схеме рис. 3. Следует отметить, что приемлемой альтернативы транзисторным парам 2SB647, 2SD667 и MJE15030, MJE15031 в этом усилителе автор, похоже, не нашёл. Различные варианты их замены какими-либо из выше перечисленных транзисторов заканчивались всегда увеличением нелинейных искажений в десять и более раз. Возможна замена транзисторов MJE15030, MJE15031 парой MJE15028, MJE15029, так как они лишь немного отличаются уровнем легирования коллекторного слоя. В качестве мощных транзисторов VT7, VT8 можно применить практически любые современные мощные комплементарные биполярные транзисторы, такие как 2SA1943 и 2SC5200, MJL1302A и MJL3281 A, MJL21195 и MJL21196, NJW0302 и NJW0281, NJW1302 и NJW3281.

При измерении нелинейных искажений УМ-ИТ использован эквивалент нагрузки сопротивлением 8 Ом, который представляет собой соединённые последовательно резистор 7,5 Ом (набор резисторов МЛТ-2, включённых параллельно) и измерительный резистор 0,5 Ом Caddock МР930. С этого резистора измерительный сигнал подавался на вход звуковой карты Echo MiaMIDI, а эквивалент нагрузки при этом подключался к выходу усилителя через коаксиальный кабель длиной 1 м. На рис. 6 показан спектр сигнала частотой 1 кГц, напряжением 10 В на выходе усилителя при сопротивлении нагрузки 8 Ом и напряжении питания УМЗЧ 2x26 В. Из рис. 6 видно, что быстро спадающий спектр усилителя не содержит высших гармоник.
На рис. 7 представлен спектр сигнала на выходе УМ-ИТ, снятый при уровне выходного сигнала -1 дБ от ограничения.

На рис. 8 представлен спектр сигнала на выходе УМ-ИТ, который был снят на двухчастотном сигнале 19 и 20 кГц. Размах выходного напряжения комплексного сигнала составляет 30 В на нагрузке 8 Ом.


На рис. 9 представлен спектр сигнала на выходе УМ-ИТ, который был снят на многотональном сигнале по методу измерения реального разрешения усилителя . Сам сигнал представлял собой смесь из 16 частот в интервале 16,352...28160 Гц, выбранных таким образом, чтобы не маскировались нижние гармоники и кросс-частоты. Коэффициент амплитуды каждой из частот был выбран -20 дБ. Размах выходного напряжения комплексного сигнала составлял 30 В на нагрузке 8 Ом.

Описываемый здесь усилитель используется автором совместно с четырёхполосной АС. Головки НЧ ("midbass"), СЧ и ВЧ питаются от данного УМ-ИТ через кроссовер с фильтрами последовательного типа, рассчитанными на источник сигнала с бесконечно большим выходным сопротивлением. На самых низких частотах (в четвёртой полосе АС) применена электроакустическая обратная связь с отдельными мостовыми УМЗЧ.

УМЗЧ с высоким выходным сопротивлением не очень популярен у любителей высококачественного звуковоспроизведения, так как накладывает сильные ограничения на типы применяемых АС: это либо широкополосный громкоговоритель, либо самодельная многополосная экзотика со сведением под источник тока.

Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или звуковой карты компьютера) имеет достаточно хорошие технические характеристики (параметры). Т.е. насколько прямолинейна и широка его АЧХ, может ли он выдавать все частоты с одинаковым уровнем, без завала по низким частотам (чем часто грешат усилители низкого качества).

Заодно можно определить, развивает ли он заявленную изготовителем максимальную мощность (Pmax) и какое выходное сопротивление (Rвых) имеет.

Методика проверки амплитудно-частотной характеристики

Для измерения амплитудно-частотной характеристики (АЧХ) в один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите резистор любого типа, сопротивлением 5-10ом. Парал лельно резистору...

0 0

Вам понадобится

Осциллограф; - мультиметр; - усилитель.

Инструкция

Подключите один из каналов вашего усилителя либо к колонке, если расчетная мощность колонки заведомо больше, либо к любому эквиваленту нагрузки, сопротивление которое равно сопротивлению колонки. Используйте резистор типа ПЭВ, как эквивалент нагрузки, мощностью от 10 до 100 Ватт. Подайте на вход усилителя синусоидальный сигнал, частота которого может составлять от 100 до 200 герц; можете подать обычный музыкальный сигнал. Постепенно увеличивайте громкость.

В это время наблюдайте за экраном осциллографа и обратите внимание, при каком напряжении начнется ограничение сигнала по амплитуде на выходе усилителя. Когда вы измеряете максимальную выходную мощность, не подавайте на вход усилителя, который подключен к многополосным АС, сигналы высоких частот от генератора. Это может повлечь за собой перегрузку динамиков.

Следите за осциллограммой. На данном изображении -...

0 0

Люди, как вы одной простой вещи понять не можете....
Мощность акустики, это то, что в нее допустимо вбить, и при этом она не сгорит.
А 8ом, или 4ом, -это активное сопротивление, то есть по постоянному току. Но усилитель ведь гонит сигнал с переменной мощностью, так что для реального сигнала сопротивление колонки комплексное, то есть активное+реактивное. На реальном сигнале оно всегда больше чем заявленное активное сопротивление. Только вот тестером в лоб его не померишь.
8ом, или 4ома,-практической разницы при подключении к усилителю не будет, поскольку сопротивление колонок зависит от частоты, например на резонансной частоте у вуферов сопротивление может подскакивать до 30-40 ом, на чатотах от двух килогерци выше сопротивление увеличивается, тоже примерно до этих величин, а минимум сопротивления приходится на полосу от трехсот, до семисот герц и составляет величину омического сопротивления плюс примерно 25%...И дешевые колонки, или дорогие, роли не играет. Физику...

0 0

Качалкин капитан (1), Евгений Курц (3):
"Динаудио не понимаю."
Если сопротивление на колонки указывается одной цифрой, то это всего то приводят их импеданс (сопротивление переменному току, в данном случае колонки, на определённой частоте) на 1000Гц (по стандарту). Во всей же полосе частот импеданс АС (акустической системы) может изменяеться от 2 Ом до 100 Ом и выше. Поэтому 8 ом, 6 ом или 4 ома написанное в паспорте на АС - никакой разницы для усилителя (ресивера), т.к. он чувствует разную нагрузку во всём диапазоне частот. Этот параметр лишь косвенно даёт надежду на то, что если приведено более высокое сопротивление, то и во всём диапазоне частот вероятность его снижения до критичных для усилителя (ресивера) значений меньше.
Вывод:
усилитель должен уметь работать на низкоомную нагрузку (чем меньше, тем лучше), а импеданс АС не должен иметь сильных провалов (повышение не так страшно) и быть как можно более равномерным.

По Динаудио: акустика этой фирмы отличается...

0 0

Как определить входное сопротивление усилителя звуковой частоты Loading...

как определить входное сопротивление усилителя звуковой частоты

Почитайте Данные о входном и выходном сопротивлениях усилителей низкой частоты имеют большое значение при налаживании и испытании аппаратуры, поэтому многие радиолюбители интересуются способами измерения этих величин
Наиболее простым и доступным из них является способ, основанный на сравнении измеряемой величины с известным активным сопротивлением
Чтобы измерить входное сопротивление, прежде всего собирают схему. Затем включают звуковой генератор и устанавливают частоту, на которой желательно измерить входное сопротивление усилителя и напряжение на выходе генератора Последнее выбирают в пределах 0,5 В
Так как измерительная цепь, то есть микроамперметр и диод, обладает относительно малым сопротивлением, то леревод ползунка переключателя из одного положения в другое изменяет напряжение не только на том элементе схемы, к...

0 0

(О СНИЖЕНИИ ИНТЕРМОДУЛЯЦИОННЫХ ИСКАЖЕНИЙ И ПРИЗВУКОВ В ГРОМКОГОВОРИТЕЛЯХ)

Разницу в звучании громкоговорителей при работе с различными УМЗЧ, в первую очередь, замечают, сравнивая ламповые и транзисторные усилители: спектр их гармонических искажений часто существенно отличается. Иногда заметные отличия бывают и среди усилителей одной и той же группы. Например, в одном из аудиожурналов оценки, данные ламповым УМЗЧ мощностью 12 и 50 Вт, склонялись в пользу менее мощного. Или оценка была необъективной?

Как нам кажется, автор статьи доказательно объясняет одну из мистических причин возникновения в громкоговорителях переходных и интермодуляционных искажений, создающих заметную разницу в звучании при работе с различными УМЗЧ. Он предлагает также доступные методы существенного снижения искажений громкоговорителей, которые достаточно просто реализуются с применением современной элементной базы.

В настоящее время считается общепризнанным, что одним из требований к усилителю мощности является обеспечение неизменности его выходного напряжения при изменении сопротивления нагрузки. Иными словами, выходное сопротивление УМЗЧ должно быть невелико по сравнению с нагрузочным, составляя не более 1/10,1/1000 от модуля сопротивления (импеданса) нагрузки |Z н |. Эта точка зрения отражена в многочисленных стандартах и рекомендациях, а также в литературе. Специально введен даже такой параметр, как коэффициент демпфирования - K d (или демпинг-фактор), равный отношению номинального сопротивления нагрузки к выходному сопротивлению усилителя R вых УМ. Так, при номинальном сопротивлении нагрузки, равном 4 Ом, и выходном сопротивлении усилителя 0,05 Ом K d будет равен 80. Действующие ныне стандарты на аппаратуру HiFi требуют, чтобы значение коэффициента демпфирования у высококачественных усилителей было бы не менее 20 (а рекомендуется - не менее 100). Для большинства транзисторных усилителей, имеющихся в продаже, K d превышает 200.
Доводы в пользу малого R вых УМ (и соответственно высокого K d) общеизвестны: это обеспечение взаимозаменяемости усилителей и акустических систем, получение эффективного и предсказуемого демпфирования основного (низкочастотного) резонанса громкоговорителя, а также удобство измерения и сопоставления характеристик усилителей. Однако, несмотря на правомерность и обоснованность вышеприведенных соображений, вывод о необходимости такого соотношения, по мнению автора, принципиально ошибочен !

Всё дело в том, что этот вывод делается без учета физики работы электродинамических головок громкоговорителей (ГГ). Подавляющее большинство разработчиков усилителей искренне полагает, что всё, что от них требуется - это выдать напряжение требуемой величины на заданном сопротивлении нагрузки с возможно меньшими искажениями. Разработчики громкоговорителей, в свою очередь, вроде бы должны исходить из того, что их изделия будут питаться от усилителей с пренебрежимо малым выходным сопротивлением. Казалось бы, все просто и ясно - какие тут могут быть вопросы?

Тем не менее, вопросы, и очень серьёзные, имеются. Главным из них является вопрос о величине интермодуляционных искажений , вносимых ГГ при работе ее от усилителя с пренебрежимо малым внутренним сопротивлением (источника напряжения или источника ЭДС).

«Какое отношение к этому может иметь выходное сопротивление усилителя? Не морочьте мне голову!» - скажет читатель. - И ошибётся. Имеет, и самое прямое, несмотря на то, что факт этой зависимости упоминается крайне редко. Во всяком случае, не обнаружено современных работ, в которых бы рассматривалось это влияние на все параметры сквозного электроакустического тракта - от напряжения на входе усилителя до звуковых колебаний. При рассмотрении этой темы ранее почему-то ограничивались анализом поведения ГГ вблизи основного резонанса на нижних частотах, тогда как не менее интересное происходит на заметно более высоких частотах - на пару октав выше резонансной частоты.

Для восполнения этого пробела и предназначена эта статья. Надо сказать, что для повышения доступности изложение весьма упрощено и схематизировано, поэтому ряд «тонких» вопросов остался нерассмотренным. Итак, чтобы понять, как выходное сопротивление УМЗЧ влияет на интермодуляционные искажения в громкоговорителях, надо вспомнить, какова физика излучения звука диффузором ГГ.

Ниже частоты основного резонанса при подаче синусоидального напряжения сигнала на обмотку звуковой катушки ГГ амплитуда смещения её диффузора определяется упругим противодействием подвеса (или сжимаемого в закрытом ящике воздуха) и почти не зависит от частоты сигнала. Работа ГГ в этом режиме характеризуется большими искажениями и очень низкой отдачей полезного акустического сигнала (очень низким КПД).

На частоте основного резонанса масса диффузора вместе с колеблющейся массой воздуха и упругостью подвеса образуют колебательную систему, аналогичную грузику на пружинке. КПД излучения в этой области частот близок к максимальному для данной ГГ.

Выше частоты основного резонанса силы инерции диффузора вместе с колеблющейся массой воздуха оказываются большими, чем силы упругости подвеса, поэтому смещение диффузора оказывается обратно пропорциональным квадрату частоты. Однако ускорение диффузора при этом теоретически не зависит от частоты, что и обеспечивает равномерность АЧХ по звуковому давлению. Следовательно, для обеспечения равномерности АЧХ ГГ на частотах выше частоты основного резонанса к диффузору со стороны звуковой катушки необходимо прикладывать силу постоянной амплитуды, как это следует из второго закона Ньютона (F=m*a).

Сила же, действующая на диффузор со стороны звуковой катушки, пропорциональна току в ней. При подключении ГГ к источнику напряжения U ток I в звуковой катушке на каждой частоте определяется из закона Ома I(f)=U/Z г (f), где Z г (f) - зависящее от частоты комплексное сопротивление звуковой катушки. Оно определяется преимущественно тремя величинами: активным сопротивлением звуковой катушки R г (измеряемым омметром), индуктивностью L г. На ток влияет также и противо-ЭДС, возникающая при перемещении звуковой катушки в магнитном поле и пропорциональная скорости перемещения.

На частотах заметно выше основного резонанса величиной противо-ЭДС можно пренебречь, поскольку диффузор со звуковой катушкой просто не успевают разогнаться за половину периода частоты сигнала. Поэтому зависимость Z г (f) выше частоты основного резонанса определяется в основном величинами R г и L г

Так вот, ни сопротивление R г, ни индуктивность L г особым постоянством не отличаются. Сопротивление звуковой катушки сильно зависит от температуры (ТКС меди около +0,35%/ о С), а температура звуковой катушки малогабаритных среднечастотных ГГ при нормальной работе изменяется на величину в 30...50 о С и причем весьма быстро - за десятки миллисекунд и менее. Соответственно, сопротивление звуковой катушки, а следовательно, и ток через неё, и звуковое давление при неизменном приложенном напряжении изменяются на 10...15%, создавая интермодуляционные искажения соответствующей величины (в низкочастотных ГГ, тепловая инерционность которых велика, разогрев звуковой катушки вызывает эффект тепловой компрессии сигнала).

Изменения индуктивности ещё более сложны. Амплитуда и фаза тока через звуковую катушку на частотах заметно выше резонансной в значительной мере определяются величиной индуктивности. А она очень сильно зависит от положения звуковой катушки в зазоре: при нормальной амплитуде смещения для частот, лишь немногим больших, нежели частота основного резонанса, индуктивность изменяется на 15...40% у различных ГГ. Соответственно при номинальной мощности, подводимой к громкоговорителю, интермодуляционные искажения могут достигать 10...25%.

Сказанное выше иллюстрируется фотографией осциллограмм звукового давления, снятых на одной из лучших отечественных среднечастотных ГГ - 5ГДШ-5-4. Структурная схема измерительной установки приведена на рисунке.

В качестве источника двухтонального сигнала применены пара генераторов и два усилителя, между выходами которых подключена испытуемая ГГ, установленная на акустическом экране площадью около 1 м 2 . Два отдельных усилителя с большим запасом по мощности (400 Вт) использованы с целью избежать образования интермодуляционных искажений при прохождении двухтонового сигнала через усилительный тракт. Звуковое давление, развиваемое головкой, воспринималось ленточным электродинамическим микрофоном, нелинейные искажения которого составляют величину менее -66дБ при уровне звукового давления 130 дБ. Звуковое давление такого громкоговорителя в этом эксперименте составляло примерно 96 дБ, та что искажениями микрофона при данных условиях можно было пренебречь.

Как видно на осциллограммах на экране верхнего осциллографа (верхняя - без фильтрации, нижняя - после фильтрации ФВЧ), модуляция сигнала с частотой 4 кГц под воздействием другого с частотой 300 Гц (при мощности на головке 2,5 Вт) превышает 20%. Это соответствует величине интермодуляционных искажений около 15%. Думается, нет нужды напоминать о том, что порог заметности продуктов интермодуляционных искажений лежит намного ниже одного процента, достигая в ряде случаев сотых долей процента. Понятно, что искажения УМЗЧ, если только они имеют «мягкий» характер, и не превышают нескольких сотых процента, просто неразличимы на фоне искажений в громкоговорителе, вызванных его работой от источника напряжения. Интермодуляционные продукты искажений разрушают прозрачность и детальность звучания - получается «каша», в которой отдельные инструменты и голоса слышны лишь изредка. Этот тип звучания наверняка хорошо знаком читателям (хорошим тестом на искажения может служить фонограмма детского хора).

Знатоки могут возразить, что для уменьшения непостоянства импеданса звуковой катушки существует множество способов: это и заполнение зазора охлаждающей магнитной жидкостью, и установка медных колпачков на керны магнитной системы, и тщательный подбор профиля керна и плотности намотки катушки, а также многое другое. Однако все эти методы, во-первых, не решают проблему в принципе, а во-вторых, ведут к усложнению и удорожанию производства ГГ, вследствие чего не находят полного применения даже в студийных громкоговорителях. Именно поэтому большинство среднечастотных и низкочастотных ГГ не имеет ни медных колпачков, ни магнитной жидкости (в таких ГГ при работе на полной мощности жидкость нередко выбрасывается из зазора).

Следовательно, питание ГГ от высокоомного источника сигнала (в пределе - от источника тока) является полезным и целесообразным способом снижения их интермодуляционных искажений, особенно при построении многополосных активных акустических систем. Демпфирование основного резонанса при этом приходится выполнять чисто акустическим путем, поскольку собственная акустическая добротность среднечастотных ГГ, как правило, значительно превышает единицу, достигая 4...8.

Любопытно, что именно такой режим «токового» питания ГГ имеет место в ламповых УМЗЧ с пентодным или тетродным выходом при неглубокой (менее 10 дБ) ООС, особенно при наличии местной ООС по току в виде сопротивления в цепи катода.

В процессе налаживания такого усилителя его искажения без общей ООС обычно оказываются в пределах 2,5% и уверенно заметны на слух при включении в разрыв контрольного тракта (метод сравнения с «прямым проводом»). Однако после подключения усилителя к громкоговорителю обнаруживается, что по мере увеличения глубины обратной связи звучание сначала улучшается, а затем происходит потеря его детальности и прозрачности. Особенно четко это заметно в многополосном усилителе, выходные каскады которого работают непосредственно на соответствующие головки громкоговорителей без каких-либо фильтров.

Причина этого, на первый взгляд, парадоксального явления в том, что при увеличении глубины ООС по напряжению выходное сопротивление усилителя резко снижается. Негативные последствия питания ГГ от УМЗЧ с малым выходным сопротивлением рассмотрены выше. В триодном усилителе выходное сопротивление, как правило, намного меньше, чем в пентодном или тетродном, а линейность до введения ООС выше, поэтому введение ООС по напряжению улучшает работу отдельно взятого усилителя, но вместе с тем ещё более ухудшает работу головки громкоговорителя. Как следствие, в результате введения ООС по выходному напряжению в триодный усилитель звук, действительно, может становиться хуже, несмотря на улучшение характеристик собственно усилителя! Этот эмпирически установленный факт служит неиссякаемой пищей для спекуляций на тему вреда от применения обратных связей в звуковых усилителях мощности, а также рассуждений об особой, ламповой прозрачности и естественности звучания. Однако из вышерассмотренных фактов со всей очевидностью следует, что дело не в наличии (или отсутствии) самой по себе ООС, а в результирующем выходном сопротивлении усилителя. Вот где «собака зарыта»!

Стоит сказать несколько слов об использовании отрицательного выходного сопротивления УМЗЧ. Да, положительная обратная связь (ПОС) по току помогает задемпфировать ГГ на частоте основного резонанса и уменьшить мощность, рассеиваемую на звуковой катушке. Однако за простоту и эффективность демпфирования приходится платить возрастанием влияния индуктивности ГГ на её характеристики, даже по сравнению с режимом работы от источника напряжения. Это вызвано тем, что постоянная времени L г /R г заменяется на большую, равную L г /. Соответственно понижается частота, начиная с которой в сумме импедансов системы «ГГ + УМЗЧ» начинает доминировать индуктивное сопротивление. Аналогично увеличивается и влияние тепловых изменений активного сопротивления звуковой катушки: сумма изменяющегося сопротивления звуковой катушки и неизменного отрицательного выходного сопротивления усилителя в процентном отношении изменяется сильнее.

Конечно, если R вых. УМ по абсолютной величине не превышает 1/3...1/5 от активного сопротивления обмотки звуковой катушки, потеря от введения ПОС невелика. Поэтому слабую ПОС по току для небольшого дополнительного демпфирования или для точной подстройки добротности в низкочастотной полосе применять можно. Кроме того, ПОС по току и режим источника тока в УМЗЧ не совместимы между собой, вследствие чего токовое питание ГГ в низкочастотной полосе, к сожалению, оказывается не всегда применимым.

С интермодуляционными искажениями мы, видимо, разобрались. Теперь осталось рассмотреть второй вопрос - величину и длительность призвуков, возникающих в диффузоре ГГ при воспроизведении сигналов импульсного характера. Этот вопрос гораздо сложнее и «тоньше».

Для исключения этих призвуков теоретически есть две возможности. Первая - это сдвинуть все резонансные частоты за пределы рабочего диапазона частот, в область далекого ультразвука (50...100 кГц). Этим способом пользуются при разработке маломощных высокочастотных ГГ и некоторых измерительных микрофонов. Применительно к ГГ - это способ «жесткого» диффузора.

Так вот, возможен и третий вариант - использование ГГ с относительно «жестким» диффузором и введение её акустического демпфирования. В этом случае удается в некоторой мере совместить достоинства обоих подходов. Именно таким образом чаще всего строятся студийные контрольные громкоговорители (большие мониторы). Естественно, что при питании демпфированной ГГ от источника напряжения из-за резкого падения полной добротности основного резонанса существенно искажается АЧХ. Источник тока в этом случае также оказывается предпочтительнее, поскольку способствует выравниванию АЧХ одновременно с исключением эффекта термической компрессии.

Обобщая вышеизложенное, можно сделать следующие практические выводы:

1. Режим работы головки громкоговорителя от источника тока (в противоположность источнику напряжения) обеспечивает существенное снижение интермодуляционных искажений, вносимых самой головкой.

2. Наиболее целесообразный вариант конструкции громкоговорителя с низкими интермодуляционными искажениями - активный многополосный, с разделительным фильтром (кроссовером) и отдельными усилителями на каждую полосу. Впрочем, этот вывод справедлив независимо от режима питания ГГ.

4. С целью получения высокого выходного сопротивления усилителя и сохранения малой величины его искажений следует применять ООС не по напряжению, а по току.

Конечно, автор понимает, что предлагаемый метод снижения искажений не является панацеей. Кроме того, в случае использования готового многополосного громкоговорителя осуществление токового питания его отдельных ГГ без переделки невозможна. Попытка же подключения многополосного громкоговорителя в целом к усилителю с повышенным выходным сопротивлением приведёт не столько к снижению искажений, сколько к резкому искажению АЧХ и соответственно, сбою тонального баланса. Тем не менее снижение интермодуляционных искажений ГГ почти на порядок , причем столь доступным методом, явно заслуживает достойного внимания.

С.АГЕЕВ, г. Москва

Выходное сопротивление можно определить двумя способами.

1) Отключить сопротивление нагрузки. Замкнуть активный источник входного сигнала. Подвести к выходным зажимам усилителя переменное напряжение . Рассчитать переменный ток , потребляемый от источника . Определить выходное сопротивление усилителя . Схема замещения усилителя, реализующая этот способ, приведена на рис.2.11.

Рисунок 2.11 - Схема замещения усилителя, для расчета R Вых

2) Определение выходного сопротивления по нагрузочной характеристике.

Выходную цепь усилителя можно представить следующей моделью, в которой выходная цепь транзистора представлена источником ЭДС (Рис. 2.12).

Рисунок 2.12 - Схема замещения выходной цепи усилителя

Нагрузочная характеристика усилителя, определяется зависимостью напряжения на нагрузке от тока нагрузки, будет иметь вид, приведенный на рис.2.13.

Рисунок 2.13 - Нагрузочная характеристика усилителя

Для выходной цепи усилителя в режимах холостого хода (R Н =¥) и короткого замыкания (R Н =0) определим значения U Нхх и I КЗ :

Из нагрузочной характеристики следует, что выходное сопротивление усилителя:

При условии, что , можно записать: .

Следовательно, результаты определения выходного сопротивления, полученные первым и вторым способами, одинаковы.

Поскольку входное и выходное сопротивления схемы с ОЭ соизмеримы, то возможно последовательное включение каскадов усилителей с ОЭ при их удовлетворительном согласовании. Так, например, для двухкаскадного усилителя с коэффициентами усиления К 1 и К 2 и равенством R Вых1 =R Вх2 , получим общий коэффициент усиления усилителя .

Выводы:

Схема усилителя напряжения (ОЭ) имеет примерно равные входное и выходное сопротивления, что позволяет согласовывать по напряжению входное сопротивление последующего каскада с выходным сопротивлением предыдущего при их последовательном включении в многокаскадных усилителях. Схема с ОБ не позволяет выполнять такое включение, так как . Для последовательного включения каскадов с ОБ между ними необходимо включать согласующие каскады, которые строятся по схеме с ОК (см. разд.2.3).

Коэффициенты усиления схем с ОЭ и ОБ по напряжению K U >>1 (десятки) и отличаются лишь фазовыми соотношениями j ОЭ =180°, j ОБ =0°.

Коэффициенты усиления по току для схемы с ОЭ (K I >>1), а для схемы с ОБ (K I <1). Поскольку коэффициент усиления по мощности K P =K U ×K I , то схема с ОЭ имеет наибольший коэффициент.

Схема усилителя напряжения с ОЭ находит более широкое применение в электронике, однако схема с ОБ, несмотря на ряд указанных недостатков, используется в соответствии со своими преимуществами. К ним следует отнести наиболее высокую температурную стабильность и меньшие нелинейные искажения (см. разд. 5).


8 ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ RC-УСИЛИТЕЛЕЙ
ЗВУКОВЫХ ЧАСТОТ

Прежде чем проверять динамики, колонки или наушники, убедитесь в том, что ваш усилитель (или стационарный, или встроенный в активные колонки, или звуковой карты компьютера) имеет достаточно хорошие технические характеристики (параметры). Т.е. насколько прямолинейна и широка его АЧХ , может ли он выдавать все частоты с одинаковым уровнем, без завала по низким частотам (чем часто грешат усилители низкого качества).

Заодно можно определить, развивает ли он заявленную изготовителем максимальную мощность (Pmax) и какое выходное сопротивление (Rвых) имеет.

Методика проверки амплитудно-частотной характеристики

Для измерения амплитудно-частотной характеристики (АЧХ ) в один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите, сопротивлением 5-10ом. Парал­лельно резистору подключите вольтметр пере­менного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1вольт (1000 милли­вольт), далее, не меняя уровень сигнала, уменьшайте частоту генератора (в диапа­зоне 1000-100 герц кнопкой "-100", в диапазоне 100-20 герц кнопкой "-10") начиная от 1000гц. и до 20гц. включительно (при этом регуляторы тембра на усилителе должны стоять в среднем положении или отключены, т.е. его АЧХ должна быть прямолинейна (горизон­тальна).

Напряжение на выходе усилителя НЕ ДОЛЖНО меняться более чем на ±2 децибела (или в 1,25 раза), но чем меньше, тем лучше (в нашем случае, оно должно находиться в пределах между 0,8-1,25 вольт, или 800-1250 милли­вольт). Идеальный вариант - все частоты выдаются с одинаковым уровнем.

Ну а если завал напряжения по низким частотам составит 2 и более раз, что соответ­ствует 6 децибел и более (т.е. напряжение опустится до 0,5 вольт и менее), то ваши колонки никогда не смогут звучать во всей своей красе. К тому же, при нелинейной характеристике усилителя вы не сможете точно определить резонансную частоту динамиков. Пример такой нелинейной АЧХ показан на рисунке слева (см. синюю кривую).

Точно также проверяется и второй канал усилителя. В случае значительного спада сигнала на низких частотах желательно поменять усилитель на более качественный.

Измерение выходного сопротивления усилителя

От величины выходного сопротивления зависят коэффициент демпфирования и интер­модуляционные искажения, также оно напрямую влияет на общую добротность системы. Выходное сопротивление усилителя мощности должно находиться в пределах 1/10-1/1000 от сопротивления нагрузки и у современных усилителей имеет величину порядка 0,01-0,1 Ом.

Для его измерения в качестве нагрузки усилителя проводниками подключите, сопротивлением 4 или 8ом соответствующей мощности. Параллельно выходу усилителя подключите вольтметр переменного тока (цифровой в данном случае удобнее стрелочного), и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение в пределах от 1 до 5 вольт.

Вначале нужно замерить выходное напряжение усилителя на холостом ходу (без нагрузки). Потом проделать то же самое, нагрузив его на резистор. Все величины, включая Rнагр, нужно измерять как можно точнее. Выходное сопротивление вычисляется по формуле
Rвых=[(Uхх/Uнагр)-1]×Rнагр или
Rвых=[(Uхх-Uнагр)/Uнагр]×Rнагр. пример: [(5-4,9)/4,9]×8=0,163ом.

Таким образом можно определить выходное сопротивление и на втором канале, и на любой частоте.

Измерение максимальной мощности

Некоторые пользователи хотят знать, какую мощность реально выдают их усилители в нагрузку, не доверяя характеристикам, заявленным производителями. Это можно сделать, но вам понадобятся:

  1. мощный нагрузочный резистор
  2. генератор звуковых частот
  3. вольтметр переменного напряжения
  4. осциллограф.

Самое сложное, это купить или самостоятельно изготовить мощный нагрузочный резистор и найти осциллограф. В крайнем случае, в качестве осциллографа можно использовать компьютер или ноутбук с программой "Виртуальный осциллограф" из (объём 0,3 Мб.). Подробное описание его работы и схема адаптера (делитель напряжения для согласования входа звуковой карты компьютера с источником исследуемого напряжения) имеются в справке программы. Резистор можно изготовить из спирали древнего утюга, электрической плитки или тепловентилятора.

В один из каналов (левый или правый) вместо колонки в качестве нагрузки усилителя проводниками подключите, сопротивлением, соответствующим расчётному сопротивлению нагрузки вашего усилителя. Оно указывается в инструкции на аппаратуру и обычно составляет 8 или 4ом. Мощность резистора должна быть достаточной, чтобы он не сгорел во время работы, т.е. не меньше предполагаемой выходной мощности усилителя (если усилитель заявлен на 100 ватт на канал, мощность резистора должна быть 100 ватт и больше).

Параллельно резистору подключите вольтметр переменного тока (лучше стрелочный, он показывает действующее значение напряжения), а также осциллограф и, подав с компьютера сигнал генератора звуковых частот ( 22Кб.) на частоте 1000 герц регулятором громкости установите выходное напряжение, например 1 вольт (1000 милли­вольт). Наблюдайте форму сигнала на осциллографе, далее, не меняя частоту, увеличивайте амплитуду сигнала.

Синусоида будет увеличиваться по высоте, не искажая свою форму, но в какой-то момент произойдёт её клиппирование, она как бы упрётся в "потолок и пол", вместо закруглённой, её верхняя и/или нижняя части станут горизонтальными, как на рисунке справа, т.е. начнётся ограничение сигнала по амплитуде. Уменьшите амплитуду таким образом, чтобы сигнал был на грани клиппирования (ещё сохранял закругленную форму). Напряже­ние, показанное в этот момент на вольтметре, равно Umax. По формуле P=U²/R рассчитайте максимальную мощность усилителя.

Например, Umax=21v. R=4om. Pmax=21²/4=110ватт. Если R=8ом, то Рmax=55ватт.

Таким же способом можно проверить максимальную выходную мощность на нижней частоте АЧХ усилителя (20 герц.), или на нижней частоте частотного диапазона, указанного для ваших колонок, например 40, 45 или 50 герц. Ограничение синусоиды по амплитуде в идеале должно происходить строго симметрично, на обоих полуволнах сигнала.

Аналогично замерьте мощность во втором канале усилителя.

Нравится

ВЫЙТИ в оглавление

Copyright © Полубоярцев А.В.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Высокое напряжение и не только Кварцевый генератор 50 гц Высокое напряжение и не только Кварцевый генератор 50 гц Измерение чувствительности и номинальной выходной Сопротивление усилителя Измерение чувствительности и номинальной выходной Сопротивление усилителя Ford Crown Victoria: характеристики и отзывы Ford Crown Victoria: характеристики и отзывы